Algorithmic Learning Theory
Springer Berlin (Verlag)
978-3-540-41237-3 (ISBN)
INVITED LECTURES.- Extracting Information from the Web for Concept Learning and Collaborative Filtering.- The Divide-and-Conquer Manifesto.- Sequential Sampling Techniques for Algorithmic Learning Theory.- REGULAR CONTRIBUTIONS.- Towards an Algorithmic Statistics.- Minimum Message Length Grouping of Ordered Data.- Learning From Positive and Unlabeled Examples.- Learning Erasing Pattern Languages with Queries.- Learning Recursive Concepts with Anomalies.- Identification of Function Distinguishable Languages.- A Probabilistic Identification Result.- A New Framework for Discovering Knowledge from Two-Dimensional Structured Data Using Layout Formal Graph System.- Hypotheses Finding via Residue Hypotheses with the Resolution Principle.- Conceptual Classifications Guided by a Concept Hierarchy.- Learning Taxonomic Relation by Case-based Reasoning.- Average-Case Analysis of Classification Algorithms for Boolean Functions and Decision Trees.- Self-duality of Bounded Monotone Boolean Functions and Related Problems.- Sharper Bounds for the Hardness of Prototype and Feature Selection.- On the Hardness of Learning Acyclic Conjunctive Queries.- Dynamic Hand Gesture Recognition Based On Randomized Self-Organizing Map Algorithm.- On Approximate Learning by Multi-layered Feedforward Circuits.- The Last-Step Minimax Algorithm.- Rough Sets and Ordinal Classification.- A note on the generalization performance of kernel classifiers with margin.- On the Noise Model of Support Vector Machines Regression.- Computationally Efficient Transductive Machines.
Erscheint lt. Verlag | 15.11.2000 |
---|---|
Reihe/Serie | Lecture Notes in Artificial Intelligence | Lecture Notes in Computer Science |
Zusatzinfo | XII, 348 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 508 g |
Themenwelt | Informatik ► Theorie / Studium ► Algorithmen |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Schlagworte | Algorithm analysis and problem complexity • Algorithmic Learning • Algorithmic Learning Theory • algorithms • Algorithmus • Complexity • Computational Learning • Computational Logic • Discovery Science • Hardcover, Softcover / Informatik, EDV/Informatik • HC/Informatik, EDV/Informatik • Inductive Inference • Knowledge Discovery • learning • Learning Algorithms • Learning theory • Logic • machine learning • Maschinelles Lernen • Neural networks • Statistical Learning • Support Vector Machine |
ISBN-10 | 3-540-41237-9 / 3540412379 |
ISBN-13 | 978-3-540-41237-3 / 9783540412373 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich