Polynomial Automorphisms
Springer Basel (Verlag)
978-3-7643-6350-5 (ISBN)
I Methods.- 1. Preliminaries.- 2 Derivations and polynomial automorphisms.- 3 Invertibility criteria and inversion formulae.- 4 Injective morphisms.- 5 The tame automorphism group of a polynomial ring.- 6 Stabilization Methods.- 7 Polynomial maps with nilpotent Jacobian.- II Applications.- 8 Applications of polynomial mappings to dynamical systems.- 9 Group actions.- 10 The Jacobian Conjecture.- III Appendices.- A Some commutative algebra.- A.1 Rings.- A.2 Modules.- A.3 Localization.- A.4 Completions.- A.5 Finiteness conditions and integral extensions.- A.6 The universal coefficients method.- B Some basic results from algebraic geometry.- B.1 Algebraic sets.- B.2 Morphisms of irreducible affine algebraic varieties.- C Some results from Gröbner basis theory.- C.1 Definitions and basic properties.- C.2 Applications: several algorithms.- D Flatness.- D.1 Flat modules and algebras.- D.2 Flat morphisms between affine algebraic varieties.- E.2 Direct and inverse images.- F Special examples and counterexamples.- Authors Index.
"...This book is a valuable reference for the study of polynomial automorphisms, due to its breadth of coverage and clarity of exposition."
--Mathematical Reviews
Erscheint lt. Verlag | 1.9.2000 |
---|---|
Reihe/Serie | Progress in Mathematics |
Zusatzinfo | XVIII, 329 p. |
Verlagsort | Basel |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 720 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
Schlagworte | Algebra • Algebraic Geometry • algebraic group • Algebraic Varieties • automorphism • Commutative algebra • Dimension • Field • Grad • Gröbner basis • Invariant theory • matrices |
ISBN-10 | 3-7643-6350-9 / 3764363509 |
ISBN-13 | 978-3-7643-6350-5 / 9783764363505 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich