Learning and Intelligent Optimization
Springer Berlin (Verlag)
978-3-642-34412-1 (ISBN)
Dr. Youssef Hamadi is the head of the Constraint Reasoning Group at Microsoft Research Cambridge, and his research interests include combinatorial optimization in alternative frameworks (parallel and distributed architectures); the application of machine learning to search; autonomous search; and parallel propositional satisfiability.
Iterative-Deepening Search with On-Line Tree Size Prediction.- A Learning Optimization Algorithm in Graph Theory: Versatile Search for Extremal Graphs Using a Learning Algorithm.- A Math-Heuristic Dantzig-Wolfe Algorithm for the Capacitated Lot Sizing Problem.- Application of the Nested Rollout Policy Adaptation Algorithm to the Traveling Salesman Problem with Time Windows.- Parallel Algorithm Configuration.- Community Detection in Social and Biological Networks Using Differential Evolution.- A Study on Large Population MOEA Using Adaptive -Box Dominance and Neighborhood Recombination for Many.- Objective Optimization.- A Non-adaptive Stochastic Local Search Algorithm High-Dimensional Model-Based Optimization Based on Noisy Evaluations of Computer Games.- Pilot, Rollout and Monte Carlo Tree Search Methods for Job Shop Scheduling.- Minimizing Time When Applying Bootstrap to Contingency Tables Analysis of Genome-Wide Data.- Quantifying Homogeneity of Instance Sets for Algorithm Configuration.- Automatically Configuring Algorithms for Scaling Performance.- Upper Confidence Tree-Based Consistent Reactive Planning Application to MineSweeper.- Influence of the Migration Period in Parallel Distributed Gas for Dynamic Optimization.- A Hyper-Heuristic Inspired by Pearl Hunting.- Five Phase and Genetic Hive Hyper-Heuristics for the Cross-Domain Search.- Implicit Model Selection Based on Variable Transformations in Estimation of Distribution.- Improving the Exploration in Upper Confidence Trees.- Parallel GPU Implementation of Iterated Local Search for the Travelling Salesman Problem.- Evaluation of a Family of Reinforcement Learning Cross-Domain Optimization Heuristics.-Effect of SMS-EMOA Parameterizations on Hypervolume Decreases. - Effects of Speciation on Evolution of Neural Networks in Highly Dynamic Environments.- Natural Max-SAT Encoding of Min-SAT. A New Hyperheuristic Algorithm for Cross-Domain Search Problems.- Brain Cine-MRI SequencesRegistration Using B-Spline Free-Form Deformations and MLSDO Dynamic Optimization Algorithm.- Global Optimization for Algebraic Geometry.- Clause Sharing in Parallel MaxSAT.- An Intelligent Hyper-Heuristic Framework for CHeSC 2011.
Erscheint lt. Verlag | 28.9.2012 |
---|---|
Reihe/Serie | Lecture Notes in Computer Science | Theoretical Computer Science and General Issues |
Zusatzinfo | XXIV, 514 p. 132 illus. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 819 g |
Themenwelt | Informatik ► Theorie / Studium ► Algorithmen |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Schlagworte | Algorithm analysis and problem complexity • dynamic optimization • Local Search • Multi-Objective Optimization • SAT • Traveling Salesman Problem |
ISBN-10 | 3-642-34412-7 / 3642344127 |
ISBN-13 | 978-3-642-34412-1 / 9783642344121 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich