Randomized Algorithms: Approximation, Generation, and Counting - Russ Bubley

Randomized Algorithms: Approximation, Generation, and Counting

(Autor)

Buch | Softcover
152 Seiten
2011 | Softcover reprint of the original 1st ed. 2001
Springer London Ltd (Verlag)
978-1-4471-1180-1 (ISBN)
106,99 inkl. MwSt
Randomized Algorithms discusses two problems of fine pedigree: counting and generation, both of which are of fundamental importance to discrete mathematics and probability. When asking questions like "How many are there?" and "What does it look like on average?" of families of combinatorial structures, answers are often difficult to find -- we can be blocked by seemingly intractable algorithms. Randomized Algorithms shows how to get around the problem of intractability with the Markov chain Monte Carlo method, as well as highlighting the method's natural limits. It uses the technique of coupling before introducing "path coupling" a new technique which radically simplifies and improves upon previous methods in the area.

1 Mathematical Background.- 1.1 Computational Complexity.- 1.2 Probability.- 1.3 Markov Chains.- 1.4 Graph Theory.- 2 Techniques for Sampling and Approximate Sampling.- 2.1 Introduction.- 2.2 Direct Sampling.- 2.3 Markov Chain Method.- 3 Approximate Counting.- 3.1 Parsimonious Reductions.- 3.2 Counting Directly.- 3.3 Counting and Sampling.- 3.4 The Markov Chain Monte Carlo Method.- 4 Applications: Coupling.- 4.1 Hypergraph Colourings.- 4.2 Sink-Free Graph Orientations and Twice-Sat.- 4.3 Log-Concave Sampling, and the Volume of a Convex Body.- Intermezzo: Path Coupling.- 5 Applications: Path Coupling.- 5.1 Introduction.- 5.2 Twice-Sat Revisited.- 5.3 Sink- and Source-Free Graph Orientations.- 5.4 Totally Edge Cyclic Orientations.- 5.5 Independent Sets: The Conserved Hard-Core Model.- 5.6 Independent Sets: The Non-Conserved Hard-Core Model.- 5.7 Linear Extensions of a Partial Order.- 5.8 Graph Colouring.- 5.9 The Extended Potts Framework.- 5.10 Graph Colouring Revisited.- 6 Directions for Future Work.- 6.1 Breaking Thresholds.- 6.2 Beyond Self-Reducibility.- 6.3 Mixed Methods for Approximate Counting.- 6.4 Faster Reductions from Approximate Counting to Approximate Sampling.- 6.5 Anti-ferromagnetic Models.- 6.6 Log-Concave Sampling via Path Coupling.- Appendices.- A An Application of Dobrushin’s Uniqueness Criterion.- B A Hierarchy of #SAT Restrictions.- B.1 Introduction.- B.2 A Summary of Known Results.- B.2.1 Easy Exact Counting.- B.2.2 Hard Exact Counting.- B.2.3 Easy Approximate Counting.- B.2.4 Hard Approximate Counting.- B.3 Summary and Conclusions.- C Equivalence of Transposition Distance to Spearman’s Footrule.

Reihe/Serie Distinguished Dissertations
Zusatzinfo XX, 152 p.
Verlagsort England
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Theorie / Studium Algorithmen
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Graphentheorie
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Schlagworte Discrete Mathematics • Markov Chain • Monte Carlo Method • Path Coupling • Probability • randomized algorithms
ISBN-10 1-4471-1180-X / 144711180X
ISBN-13 978-1-4471-1180-1 / 9781447111801
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
29,99
Interlingua zur Gewährleistung semantischer Interoperabilität in der …

von Josef Ingenerf; Cora Drenkhahn

Buch | Softcover (2023)
Springer Fachmedien (Verlag)
32,99