A Course in p-adic Analysis
Seiten
2000
Springer-Verlag New York Inc.
978-0-387-98669-2 (ISBN)
Springer-Verlag New York Inc.
978-0-387-98669-2 (ISBN)
Discovered at the turn of the 20th century, p-adic numbers are frequently used by mathematicians and physicists. This text offers a self-contained presentation of basic p-adic analysis with a focus on analytic topics.
Kurt Hensel (1861-1941) discovered the p-adic numbers around the turn of the century. These exotic numbers (or so they appeared at first) are now well-established in the mathematical world and used more and more by physicists as well. This book offers a self-contained presentation of basic p-adic analysis. The author is especially interested in the analytical topics in this field. Some of the features which are not treated in other introductory p-adic analysis texts are topological models of p-adic spaces inside Euclidean space, a construction of spherically complete fields, a p-adic mean value theorem and some consequences, a special case of Hazewinkel's functional equation lemma, a remainder formula for the Mahler expansion, and most importantly a treatment of analytic elements.
Kurt Hensel (1861-1941) discovered the p-adic numbers around the turn of the century. These exotic numbers (or so they appeared at first) are now well-established in the mathematical world and used more and more by physicists as well. This book offers a self-contained presentation of basic p-adic analysis. The author is especially interested in the analytical topics in this field. Some of the features which are not treated in other introductory p-adic analysis texts are topological models of p-adic spaces inside Euclidean space, a construction of spherically complete fields, a p-adic mean value theorem and some consequences, a special case of Hazewinkel's functional equation lemma, a remainder formula for the Mahler expansion, and most importantly a treatment of analytic elements.
1 p-adic Numbers.- 2 Finite Extensions of the Field of p-adic Numbers.- 3 Construction of Universal p-adic Fields.- 4 Continuous Functions on Zp.- 5 Differentiation.- 6 Analytic Functions and Elements.- 7 Special Functions, Congruences.- Specific References for the Text.- Tables.- Basic Principles of Ultrametric Analysis.- Conventions, Notation, Terminology.
Reihe/Serie | Graduate Texts in Mathematics ; 198 |
---|---|
Zusatzinfo | XVI, 438 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Arithmetik / Zahlentheorie | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Naturwissenschaften ► Physik / Astronomie | |
ISBN-10 | 0-387-98669-3 / 0387986693 |
ISBN-13 | 978-0-387-98669-2 / 9780387986692 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Schulbuch Klassen 7/8 (G9)
Buch | Hardcover (2015)
Klett (Verlag)
31,50 €
Buch | Softcover (2004)
Cornelsen Verlag
25,99 €