Attractors for infinite-dimensional non-autonomous dynamical systems
Springer-Verlag New York Inc.
978-1-4614-4580-7 (ISBN)
The book is intended as an up-to-date summary of the field, but much of it will be accessible to beginning graduate students. Clear indications will be given as to which material is fundamental and which is more advanced, so that those new to the area can quickly obtain an overview, while those already involved can pursue the topics we cover more deeply.
Alexandre N. Carvalho is a Professor at University of Sao Paulo, Brazil. José A. Langa is a Professor at University of Seville, Spain. James C. Robinson is a Professor at University of Warwick, UK.
The pullback attractor.- Existence results for pullback attractors.- Continuity of attractors.- Finite-dimensional attractors.- Gradient semigroups and their dynamical properties.- Semilinear Differential Equations.- Exponential dichotomies.- Hyperbolic solutions and their stable and unstable manifolds.- A non-autonomous competitive Lotka-Volterra system.- Delay differential equations.-The Navier–Stokes equations with non-autonomous forcing.- Applications to parabolic problems.- A non-autonomous Chafee–Infante equation.- Perturbation of diffusion and continuity of attractors with rate.- A non-autonomous damped wave equation.- References.- Index.-
Reihe/Serie | Applied Mathematical Sciences ; 182 |
---|---|
Zusatzinfo | XXXVI, 412 p. |
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Informatik ► Theorie / Studium |
Mathematik / Informatik ► Mathematik ► Analysis | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
ISBN-10 | 1-4614-4580-9 / 1461445809 |
ISBN-13 | 978-1-4614-4580-7 / 9781461445807 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich