Vision and Displays for Military and Security Applications (eBook)
X, 212 Seiten
Springer New York (Verlag)
978-1-4419-1723-2 (ISBN)
Realistic and immersive simulations of land, sea, and sky are requisite to the military use of visual simulation for mission planning. Until recently, the simulation of natural environments has been limited first of all by the pixel resolution of visual displays. Visual simulation of those natural environments has also been limited by the scarcity of detailed and accurate physical descriptions of them. Our aim has been to change all that. To this end, many of us have labored in adjacent fields of psych- ogy, engineering, human factors, and computer science. Our efforts in these areas were occasioned by a single question: how distantly can fast-jet pilots discern the aspect angle of an opposing aircraft, in visual simulation? This question needs some ela- ration: it concerns fast jets, because those simulations involve the representation of high speeds over wide swaths of landscape. It concerns pilots, since they begin their careers with above-average acuity of vision, as a population.And it concerns aspect angle, which is as much as to say that the three-dimensional orientation of an opposing aircraft relative to one's own, as revealed by motion and solid form. v vi Preface The single question is by no means simple. It demands a criterion for eye-limiting resolution in simulation. That notion is a central one to our study, though much abused in general discussion. The question at hand, as it was posed in the 1990s, has been accompanied by others.
Preface 5
Contents 8
Chapter 1 10
Creating Day and Night: Past, Present, and Future 10
1.1 Act I: Day and Night 11
1.2 Act II: Day and Night 12
1.3 Act III: Day for Night 13
1.4 Act IV: Night for Day 16
1.5 Act V: Day in Night 17
1.6 Simulation and Evaluation 18
Chapter 2 21
Development of a DVI-Compatible VGA Projector Engine Based on Flexible Reflective Analog Modulators 21
2.1 FRAM Fabrication for VGA Projection Display 26
2.2 FRAM Array Testing and Selection 27
2.2.1 Test Setup 27
2.2.2 FRAM Array Screening Procedure 28
2.3 Projector Engine Control 29
2.4 480.×.1 FRAM Array Packaging 31
2.5 Projector Engine Integration 32
2.6 Conclusion 34
Chapter 3 35
Brightness and Contrast of Images with Laser-Based Video Projectors 35
3.1 LBVP Displaying Mechanisms 39
3.2 Conventional Image Characterization 39
3.3 Highlight of the Proposed Alternative Method 40
3.4 Optical Properties of Screens 40
3.4.1 Reflectivity Characteristics of a General Screen 41
3.4.2 Determining Spectral Radiance of a Screen from its BRDF 43
3.4.3 Determining Reflected Luminance 45
3.4.4 Determining Contrast 46
3.5 Practical Considerations 47
3.5.1 Parasitic Light 47
3.5.1.1 Veiling Glare 47
3.5.1.2 Environment Dependent Parasitic Light 48
3.5.2 Spatial Sampling 48
3.5.2.1 Pixel Filling, Pixel Overlap, Pixel Shape 48
3.5.2.2 Speckle 50
3.5.3 Detector Temporal Response 52
3.6 Description of the Proposed Method 52
3.6.1 Step 1: Irradiance Measurement 53
3.6.1.1 Test Pattern 53
3.6.1.2 Detector Shapes and Sizes 53
3.6.1.3 Detector-System Cut-Off Frequency and Sampling Rate 54
3.6.1.4 Spectral Measurements 54
3.6.1.5 Reduction of Measurement Errors Due to Parasitic Light 55
3.6.2 Step 2: Measurement of the BRDF 55
3.6.3 Step 3: Data Processing 55
3.7 Conclusion 56
Chapter 4 57
Physics Based Simulation of Light Sources 57
4.1 Background: The State of Fielded Training Systems Technology 59
4.2 Modeling of Point Sources 59
4.2.1 Modeling of Reflected Light 60
4.2.2 Modeling of the Placement of Cultural Lights 61
4.2.3 Physical Cultural Lighting Data in the Public Domain 62
4.2.4 Appearance of Cultural Lighting Objects 62
4.2.5 Radiative Properties of Cultural Lighting Objects 62
4.3 Placement of Cultural Lighting Objects 63
4.3.1 A Proof of Concept 63
4.3.2 Modeling of Point Sources 64
4.3.3 Modeling of Reflected Light 64
4.3.4 Modeling of the Placement of Cultural Lights 65
4.3.5 Application Description 65
4.3.6 Results 66
4.3.7 Next Steps 66
4.3.8 Integration of Visual Simulation and Lighting Formats and Standards 67
4.3.9 Aggregation of Detailed Cultural Lighting Data Dictionary 67
4.3.10 Simulation Database Tools 68
4.3.11 Runtime Graphics Tools 68
Chapter 5 69
Integration of a Deployable CIGI-Based Image Generator in an Existing Simulation 69
5.1 Background 73
5.2 MTT Visual Functions 73
5.3 MetaVR Image Generator 73
5.4 Flight IG 74
5.5 Common Image Generator Interface (CIGI) 74
5.6 Integration of the ADDNS Image Generation System with the Multi-Task Trainer 75
5.7 IG Message Comparison 75
5.8 CIGI API Calls 77
5.9 Integration Logic of CIGI Calls with MTT 78
5.10 Eagle IG/MTT Integration Issues 78
5.11 Conclusion 80
Chapter 6 83
Advances in Scalable Generic Image Generator Technology for the Advanced Deployable Day/Night Simulation Project 83
6.1 UHR Projector IG Interface Requirements 85
6.2 Additional IG Design Considerations 86
6.3 Scalable GSP Software Architecture 87
6.4 Overview of PC-IG Hardware and Software Selections 88
6.5 Physical IG Characteristics and Operating Considerations 89
6.6 Genlock System and Testing 89
6.7 Power Investigation and Measurement 90
6.8 Acoustic Noise Level Investigation and Reduction Strategy 90
6.9 Multiple-Channel Integration and Distributed Rendering Using CIGI Protocol 90
6.10 SW Host Emulator and Scripts for System Demonstration 91
6.11 IG System Validation and HW Performance Analysis 92
6.12 Current Development and Status of the Second Build of the IG Software System 93
6.13 Conclusions 93
Chapter 7 94
Detection Threshold of Visual Displacement in a Networked Flight Simulator 94
7.1 Methods 98
7.2 Procedure 99
7.3 Results 99
7.4 Discussion 101
7.5 Impact 102
Chapter 8 104
Evaluation of the Spatial and Temporal Resolution of Digital Projectors for use in Full-Field Flight Simulation 104
8.1 Methods 108
8.1.1 General Evaluation Methods 108
8.1.1.1 Spatial Resolution 108
8.1.1.2 Temporal Response 108
8.1.1.3 Tracking Blur 108
8.1.1.4 Projector Characteristics 109
8.1.2 Projector-Specific Methods 109
8.1.2.1 LCoS-Electronic Projector 109
8.1.2.2 LCoS-Mechanical Projector 110
8.1.2.3 DLP-Electronic Projector 112
8.1.2.4 LCD-Mechanical Projector 112
8.1.2.5 LCD and CRT Projectors 112
8.2 Results 112
8.2.1 Spatial Resolution 112
8.2.2 Temporal Response 113
8.2.3 Tracking Blur 113
8.3 Discussion 115
Chapter 9 117
A Spatial Cognition Paradigm to Assess the Impact of Night Vision Goggles on Way-Finding Performance 117
9.1 Method 120
9.2 Experimental Tasks 121
9.3 Procedure 122
9.4 Measurements 123
9.4.1 Navigation Performance 123
9.4.2 Spatial Knowledge Assessment 123
9.5 Results 124
9.5.1 The Learning Phase: Impact of NVGs on Navigation and Way-Finding Performance 124
9.5.2 Tests of Acquired Spatial Knowledge: Level and Accuracy of Survey Knowledge 124
9.6 Discussion 125
9.6.1 Implications for NVG Design and Procurement 125
9.6.2 Implications for Training 126
9.6.3 Critique and Lessons Learned 127
Chapter 10 129
Psychophysics of Night Vision Device Halos 129
10.1 Variation in Halo Size with Source Distance and Intensity 132
10.2 Methods 132
10.3 Objective Measures 134
10.4 Subjective Measures 134
10.5 Discussion 135
10.6 Halos as Visual Stimuli 136
10.7 Simulation Environment 137
10.8 Halo Effects and Slope Judgements 138
10.9 Methods 139
10.10 Results 140
10.11 Discussion 141
10.12 Halo Effects and Aimpoint Estimation 142
10.13 Methods 142
10.14 Results and Discussion 143
10.15 Conclusions 145
Chapter 11 147
Effects of Screen Resolution and Training Variation on a Simulated Flight Control Task 147
11.1 Transfer of Training 149
11.2 Personal Computer (PC) Based Flight Simulation 150
11.3 Above-Real-Time Training 151
11.4 Method 154
11.4.1 Experiment 1: Training Speed 155
11.4.1.1 Familiarization 156
11.4.1.2 Pre-test 156
11.4.1.3 Training 156
11.4.1.4 Post-test 157
11.4.1.5 Observers 157
11.4.2 Experiment 2: Resolution and Training Speed 158
11.4.2.1 Instructions 158
11.4.2.2 Familiarization 159
11.4.2.3 Pre-test 160
11.4.2.4 Day 2: First Training and First Post-test 160
11.4.2.5 Day 3 160
11.5 Results 161
11.5.1 Experiment 1: Training Speed 161
11.5.2 Experiment 2: Resolution and Training Speed 162
11.5.2.1 Interaction Between Training Speed and Resolution 164
11.5.3 Speed and Resolution Interactions on the Second Post-test 165
11.5.4 Individual Differences 166
11.6 Discussion and Conclusion 167
Chapter 12 168
Video-to-Reference Image Indexing 168
12.1 Technical Approach 174
12.1.1 Appearance 174
12.1.2 Geometry 175
12.1.3 Combining Appearance and Geometry 177
12.2 Empirical Evaluation 179
12.3 Summary 181
Chapter 13 182
AVS LIDAR for Detecting Obstacles Inside Aerosol 182
13.1 Aerosol Effect on LIDAR 185
13.2 Concept of AVS LIDAR Design 186
13.3 Results from Aerosol Penetration Study and Flight Test 188
13.3.1 LIDAR Aerosol Penetration Experiment 188
13.3.2 Flight Test of a Prototype of AVS LIDAR 190
13.4 Summary 191
Author Biographies 193
Glossary 197
References 207
Index 213
Erscheint lt. Verlag | 10.3.2010 |
---|---|
Zusatzinfo | X, 212 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Informatik ► Grafik / Design ► Digitale Bildverarbeitung |
Naturwissenschaften ► Geowissenschaften ► Geografie / Kartografie | |
Naturwissenschaften ► Physik / Astronomie ► Astronomie / Astrophysik | |
Naturwissenschaften ► Physik / Astronomie ► Optik | |
Technik ► Elektrotechnik / Energietechnik | |
Schlagworte | Advanced Projection Techniques • Analog • Generator • geographic modeling • high-res projection advances • human factors security • Laser • Lidar • LIDAR imaging book • military night vision • Modeling • Modulator • night vision simulation book • night vision technology • Photogrammetry methods progress • security • Simulation |
ISBN-10 | 1-4419-1723-3 / 1441917233 |
ISBN-13 | 978-1-4419-1723-2 / 9781441917232 |
Haben Sie eine Frage zum Produkt? |
Größe: 6,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich