Tree-based Graph Partitioning Constraint
ISTE Ltd and John Wiley & Sons Inc (Verlag)
978-1-84821-303-6 (ISBN)
- Titel z.Zt. nicht lieferbar
- Versandkostenfrei innerhalb Deutschlands
- Auch auf Rechnung
- Verfügbarkeit in der Filiale vor Ort prüfen
- Artikel merken
This book focuses on constraint satisfaction problems related to tree partitioning problems enriched by several additional constraints that restrict the possible partitions topology. On the one hand, this title focuses on the structural properties of tree partitioning constraints. On the other hand, it is dedicated to the interactions between the tree partitioning problem and classical restrictions (such as precedence relations or incomparability relations between nodes) involved in practical applications.
Precisely, Tree-based Graph Partitioning Constraint shows how to globally take into account several restrictions within one single tree partitioning constraint. Another interesting aspect of this book is related to the implementation of such a constraint. In the context of graph-based global constraints, the book illustrates how a fully dynamic management of data structures makes the runtime of filtering algorithms independent of the graph density.
Xavier Lorca is Associate Professor of Computer Science at the école des Mines de Nantes in France.
PART 1. CONSTRAINT PROGRAMMING AND FOUNDATIONS OF GRAPH THEORY 1
Introduction to Part 1 3
Chapter 1. Introduction to Constraint Programming 5
1.1. What is a variable? 7
1.2. What is a constraint? 8
1.3. What is a global constraint? 10
1.4. What is a propagation algorithm? 11
1.5. What is a consistency level? 14
1.6. What is a constraint solver? 15
1.7. Constraint solvers at work 17
1.8. Organization structure 21
Chapter 2. Graph Theory and Constraint Programming 23
2.1. Modeling graphs with constraint programming 24
2.2. Graph theory at work in constraint programming 34
2.3. Constraint programming at work in graph theory 37
Chapter 3. Tree Graph Partitioning 39
3.1. In undirected graphs 39
3.2. In directed graphs 42
PART 2. CHARACTERIZATION OF TREE-BASED GRAPH PARTITIONING CONSTRAINTS 47
Chapter 4. Tree Constraints in Undirected Graphs 49
4.1. Decomposition 49
4.2. Definition of constraints 51
4.3. A filtering algorithm for the proper-forest constraint 56
4.4. Filtering algorithm for the resource-forest constraint 70
4.5. Summary of undirected tree constraints 80
Chapter 5. Tree Constraints in Directed Graphs 83
5.1. Decomposition 83
5.2. Definition of constraints 86
5.3. Filtering algorithm for the tree constraint 89
5.4. Filtering algorithm for the proper-tree constraint 96
5.5. Summary of tree constraints in directed and undirected graphs 113
Chapter 6. Additional Constraints Linked to Graph Partitioning 117
6.1. Definition of restrictions 118
6.2. Complexity zoo 123
6.3. Interaction between the number of trees and the number of proper trees 129
6.4. Relation of precedence between the vertices of the graph 130
6.5. Relation of conditional precedence 137
6.6. Relation of incomparability between graph vertices 140
6.7. Interactions between precedence and incomparability constraints 143
6.8. Constraining the interior half-degree of each vertex 148
6.9. Summary 151
Chapter 7. The Case of Disjoint Paths 153
7.1. Minimum number of paths in acyclic directed graphs 156
7.2. Minimum number of paths in any directed graph 161
7.3. A path partitioning constraint 169
7.4. Summary 173
Chapter 8. Implementation of a Tree Constraint 175
8.1. Original implementation 176
8.2. Toward a “portable” implementation 181
8.3. Conclusion 191
PART 3. IMPLEMENTATION: TASK PLANNING 193
Introduction to Part 3 195
Chapter 9. First Model in Constraint Programming 199
9.1. Model for the coherence of displacements in space 199
9.2. Modeling resource consumption 200
9.3. Modeling time windows 201
9.4. Modeling coordination constraints between units 202
9.5. Limitations of the proposed model 203
Chapter 10. Advanced Model in Constraint Programming 205
10.1. Modeling the coherence of displacements in space 206
10.2. Modeling resource consumption 208
10.3. Integration of temporal aspects 208
10.4. Propagating time windows 213
PART 4. CONCLUSION AND FUTURE WORK 225
Chapter 11. Conclusion 227
Chapter 12. Perspectives and Criticisms 231
Bibliography 233
Index 239
Verlagsort | London |
---|---|
Sprache | englisch |
Maße | 165 x 241 mm |
Gewicht | 599 g |
Themenwelt | Informatik ► Software Entwicklung ► Objektorientierung |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
ISBN-10 | 1-84821-303-4 / 1848213034 |
ISBN-13 | 978-1-84821-303-6 / 9781848213036 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich