An Introduction to Hopf Algebras
Springer-Verlag New York Inc.
978-0-387-72765-3 (ISBN)
With wide-ranging connections to fields from theoretical physics to computer science, Hopf algebras offer students a glimpse at the applications of abstract mathematics. This book is unique in making this engaging subject accessible to advanced undergraduate and beginning graduate students. After providing a self-contained introduction to group and ring theory, the book thoroughly treats the concept of the spectrum of a ring and the Zariski topology. In this way the student transitions smoothly from basic abstract algebra to Hopf algebras. The importance of Hopf orders is underscored with applications to algebraic number theory, Galois module theory and the theory of formal groups. By the end of the book, readers will be familiar with established results in the field and ready to pose research questions of their own.
Robert G. Underwood is an Associate Professor of Mathematics at Auburn University. His research interests include the classification of Hopf algebra orders in group rings and the application of Hopf orders to Galois module theory. Professor Underwood earned his PhD in Mathematics in 1992 from the State University of New York at Albany, and his Masters in Math Education in 1986, also from SUNY Albany.
Preface.- Some Notation.- 1. The Spectrum of a Ring.-2. The Zariski Topology on the Spectrum.-3. Representable Group Functors.-4. Hopf Algebras. -5. Larson Orders.-6. Formal Group Hopf Orders.-7. Hopf Orders in KC_p.-8. Hopf Orders in KC_{p^2}.-9. Hopf Orders in KC_{p^3}.-10. Hopf Orders and Galois Module Theory.-11. The Class Group of a Hopf Order.-12. Open Questions and Research Problems.-Bibliography.-Index.
Zusatzinfo | XIV, 273 p. |
---|---|
Verlagsort | New York, NY |
Sprache | englisch |
Maße | 155 x 235 mm |
Themenwelt | Mathematik / Informatik ► Mathematik ► Algebra |
ISBN-10 | 0-387-72765-5 / 0387727655 |
ISBN-13 | 978-0-387-72765-3 / 9780387727653 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich