Convex Analysis and Monotone Operator Theory in Hilbert Spaces

Buch | Hardcover
484 Seiten
2011 | 2011 ed.
Springer-Verlag New York Inc.
978-1-4419-9466-0 (ISBN)

Lese- und Medienproben

Convex Analysis and Monotone Operator Theory in Hilbert Spaces - Heinz H. Bauschke, Patrick L. Combettes
139,09 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
This book examines results of convex analysis and optimization in Hilbert space, presenting a concise exposition of related theory that allows for algorithms to construct solutions to problems in optimization, equilibrium theory, monotone inclusions and more.
This book provides a largely self-contained account of the main results of convex analysis and optimization in Hilbert space. A concise exposition of related constructive fixed point theory is presented, that allows for a wide range of algorithms to construct solutions to problems in optimization, equilibrium theory, monotone inclusions, variational inequalities, best approximation theory, and convex feasibility. The book is accessible to a broad audience, and reaches out in particular to applied scientists and engineers, to whom these tools have become indispensable.

Background.- Hilbert Spaces.- Convex sets.- Convexity and Nonexpansiveness.- Fej'er Monotonicity and Fixed Point Iterations.- Convex Cones and Generalized Interiors.- Support Functions and Polar Sets.- Convex Functions.- Lower Semicontinuous Convex Functions.- Convex Functions: Variants.- Convex Variational Problems.- Infimal Convolution.- Conjugation.- Further Conjugation Results.- Fenchel-Rockafellar Duality.- Subdifferentiability.- Differentiability of Convex Functions.- Further Differentiability Results.- Duality in Convex Optimization.- Monotone Operators.- Finer Properties of Monotone Operators.- Stronger Notions of Monotonicity.- Resolvents of Monotone Operators.- Sums of Monotone Operators.-Zeros of Sums of Monotone Operators.- Fermat's Rule in Convex Optimization.- Proximal Minimization Projection Operators.- Best Approximation Algorithms.- Bibliographical Pointers.- Symbols and Notation.- References.

Erscheint lt. Verlag 3.5.2011
Reihe/Serie CMS Books in Mathematics
Zusatzinfo biography
Verlagsort New York, NY
Sprache englisch
Maße 156 x 234 mm
Gewicht 883 g
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Graphentheorie
ISBN-10 1-4419-9466-1 / 1441994661
ISBN-13 978-1-4419-9466-0 / 9781441994660
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich