Evolutionary Computation for Modeling and Optimization - Daniel Ashlock

Evolutionary Computation for Modeling and Optimization

(Autor)

Buch | Softcover
572 Seiten
2010 | Softcover reprint of hardcover 1st ed. 2006
Springer-Verlag New York Inc.
978-1-4419-1969-4 (ISBN)
85,59 inkl. MwSt
Evolutionary Computation for Optimization and Modeling is an introduction to evolutionary computation, a field which includes genetic algorithms, evolutionary programming, evolution strategies, and genetic programming. The text is a survey of some application of evolutionary algorithms. It introduces mutation, crossover, design issues of selection and replacement methods, the issue of populations size, and the question of design of the fitness function. It also includes a methodological material on efficient implementation. Some of the other topics in this book include the design of simple evolutionary algorithms, applications to several types of optimization, evolutionary robotics, simple evolutionary neural computation, and several types of automatic programming including genetic programming. The book gives applications to biology and bioinformatics and introduces a number of tools that can be used in biological modeling, including evolutionary game theory. Advanced techniques such as cellular encoding, grammar based encoding, and graph based evolutionary algorithms are also covered.


This book presents a large number of homework problems, projects, and experiments, with a goal of illustrating single aspects of evolutionary computation and comparing different methods. Its readership is intended for an undergraduate or first-year graduate course in evolutionary computation for computer science, engineering, or other computational science students. Engineering, computer science, and applied math students will find this book a useful guide to using evolutionary algorithms as a problem solving tool.

An Overview of Evolutionary Computation.- Designing Simple Evolutionary Algorithms.- Optimizing Real-Valued Functions.- Sunburn: Coevolving Strings.- Small Neural Nets : Symbots.- Evolving Finite State Automata.- Ordered Structures.- Plus-One-Recall-Store.- Fitting to Data.- Tartarus: Discrete Robotics.- Evolving Logic Functions.- ISAc List: Alternative Genetic Programming.- Graph-Based Evolutionary Algorithms.- Cellular Encoding.- Application to Bioinformatics.

Zusatzinfo XX, 572 p.
Verlagsort New York, NY
Sprache englisch
Maße 155 x 235 mm
Themenwelt Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Biologie Genetik / Molekularbiologie
ISBN-10 1-4419-1969-4 / 1441919694
ISBN-13 978-1-4419-1969-4 / 9781441919694
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
IT zum Anfassen für alle von 9 bis 99 – vom Navi bis Social Media

von Jens Gallenbacher

Buch | Softcover (2021)
Springer (Verlag)
29,99
Interlingua zur Gewährleistung semantischer Interoperabilität in der …

von Josef Ingenerf; Cora Drenkhahn

Buch | Softcover (2023)
Springer Fachmedien (Verlag)
32,99