Um unsere Webseiten für Sie optimal zu gestalten und fortlaufend zu verbessern, verwenden wir Cookies. Durch Bestätigen des Buttons »Akzeptieren« stimmen Sie der Verwendung zu. Über den Button »Einstellungen« können Sie auswählen, welche Cookies Sie zulassen wollen.

AkzeptierenEinstellungen
Practical Machine Learning with AWS - Himanshu Singh

Practical Machine Learning with AWS (eBook)

Process, Build, Deploy, and Productionize Your Models Using AWS

(Autor)

eBook Download: PDF
2020 | 1st ed.
XVII, 241 Seiten
Apress (Verlag)
978-1-4842-6222-1 (ISBN)
Systemvoraussetzungen
79,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Successfully build, tune, deploy, and productionize any machine learning model, and know how to automate the process from data processing to deployment. 

This book is divided into three parts. Part I introduces basic cloud concepts and terminologies related to AWS services such as S3, EC2, Identity Access Management, Roles, Load Balancer, and Cloud Formation. It also covers cloud security topics such as AWS Compliance and artifacts, and the AWS Shield and CloudWatch monitoring service built for developers and DevOps engineers. Part II covers machine learning in AWS using SageMaker, which gives developers and data scientists the ability to build, train, and deploy machine learning models. Part III explores other AWS services such as Amazon Comprehend (a natural language processing service that uses machine learning to find insights and relationships in text), Amazon Forecast (helps you deliver accurate forecasts), and Amazon Textract.

By the end of the book, you will understand the machine learning pipeline and how to execute any machine learning model using AWS. The book will also help you prepare for the AWS Certified Machine Learning-Specialty certification exam.


What You Will Learn
  • Be familiar with the different machine learning services offered by AWS 
  • Understand S3, EC2, Identity Access Management, and Cloud Formation
  • Understand SageMaker, Amazon Comprehend, and Amazon Forecast
  • Execute live projects: from the pre-processing phase to deployment on AWS

Who This Book Is For

Machine learning engineers who want to learn AWS machine learning services, and acquire an AWS machine learning specialty certification




Himanshu Singh is Technology Lead and Senior NLP Engineer at Legato Healthcare (an Anthem Company). He has seven years of experience in the AI industry, primarily in computer vision and natural language processing. He has authored three books on machine learning. He has an MBA from Narsee Monjee Institute of Management Studies, and a postgraduate diploma in Applied Statistics.


Successfully build, tune, deploy, and productionize any machine learning model, and know how to automate the process from data processing to deployment. This book is divided into three parts. Part I introduces basic cloud concepts and terminologies related to AWS services such as S3, EC2, Identity Access Management, Roles, Load Balancer, and Cloud Formation. It also covers cloud security topics such as AWS Compliance and artifacts, and the AWS Shield and CloudWatch monitoring service built for developers and DevOps engineers. Part II covers machine learning in AWS using SageMaker, which gives developers and data scientists the ability to build, train, and deploy machine learning models. Part III explores other AWS services such as Amazon Comprehend (a natural language processing service that uses machine learning to find insights and relationships in text), Amazon Forecast (helps you deliver accurate forecasts), and Amazon Textract.By the end of the book, you will understand the machine learning pipeline and how to execute any machine learning model using AWS. The book will also help you prepare for the AWS Certified Machine Learning-Specialty certification exam.What You Will LearnBe familiar with the different machine learning services offered by AWS Understand S3, EC2, Identity Access Management, and Cloud FormationUnderstand SageMaker, Amazon Comprehend, and Amazon ForecastExecute live projects: from the pre-processing phase to deployment on AWSWho This Book Is ForMachine learning engineers who want to learn AWS machine learning services, and acquire an AWS machine learning specialty certification
Erscheint lt. Verlag 24.11.2020
Zusatzinfo XVII, 241 p. 128 illus.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Schlagworte AWS Blazing Text • AWS Deep Razor • AWS EC2 • AWS EMR • AWS Firehose • AWS Kinesis • AWS Lambda Function • AWS Machine Learning • AWS Sagemaker
ISBN-10 1-4842-6222-0 / 1484262220
ISBN-13 978-1-4842-6222-1 / 9781484262221
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Die Grundlage der Digitalisierung

von Knut Hildebrand; Michael Mielke; Marcus Gebauer

eBook Download (2025)
Springer Vieweg (Verlag)
29,99