Integrative Production Technology (eBook)

Theory and Applications
eBook Download: PDF
2017 | 1st ed. 2017
XXXIX, 1100 Seiten
Springer International Publishing (Verlag)
978-3-319-47452-6 (ISBN)

Lese- und Medienproben

Integrative Production Technology -
Systemvoraussetzungen
213,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This contributed volume contains the research results of the Cluster of Excellence 'Integrative Production Technology for High-Wage Countries', funded by the German Research Society (DFG). The approach to the topic is genuinely interdisciplinary, covering insights from fields such as engineering, material sciences, economics and social sciences. The book contains coherent deterministic models for integrative product creation chains as well as harmonized cybernetic models of production systems. The content is structured into five sections: Integrative Production Technology, Individualized Production, Virtual Production Systems, Integrated Technologies, Self-Optimizing Production Systems and Collaboration Productivity.The target audience primarily comprises research experts and practitioners in the field of production engineering, but the book may also be beneficial for graduate students. 

Foreword 5
Preface 7
Contents 9
Contributors 21
Overview 32
1 Integrative Production Technology—Theory and Applications 39
1.1 Global Economic Background 39
1.2 Opportunities and Challenges for Manufacturing Companies in High-Wage Countries 46
1.3 The Polylemma of Production 50
1.4 Research Program 51
1.5 Theory of Production 53
References 54
Individualized Production 56
2 Direct, Mold-Less Production Systems 60
2.1 Summary 61
2.2 Motivation and Research Question 63
2.2.1 Objectives and Measures for the Second Funding Period 64
2.3 State of the Art 67
2.3.1 Value Creation with Customized Products for the Case of Additive Manufacturing (AM) 67
2.3.1.1 Value and Customer Benefits of Customized Products: The Mass Customization Approach 68
2.3.2 Complementation of Manufacturing with SLM Technologies 71
2.3.2.1 The Product Production System (PPS) 72
2.3.2.2 Influences on the Product Production System (PPS) from Integrating SLM Technologies into Manufacturing 73
2.3.3 Machine-Specific Cost Drivers in Additive Manufacturing (AM) Technologies like Selective Laser Melting (SLM) 75
2.3.3.1 Current SLM Machines 75
2.3.3.2 Current Cost Models 77
2.3.4 High-Power Selective Laser Melting (HP SLM) 79
2.3.5 Qualification of Lattice Structures Manufactured by Selective Laser Melting (SLM) for Custom Part Properties 80
2.3.6 Steels in the Selective Laser Melting (SLM) Process 83
2.3.6.1 Results of the First Phase 83
2.3.6.2 Mechanical Properties of Steels Processed by Selective Laser Melting (SLM) 84
2.4 Results 85
2.4.1 Value Creation with Customized Products for the Case of Additive Manufacturing (AM) 85
2.4.1.1 Value Dimensions of Customized Products 85
2.4.1.2 Involvement and Perceived Product Value 86
2.4.1.3 Cognitive Costs of Product Customization 87
2.4.1.4 The Value of Higher Co-Design Freedom 88
2.4.1.5 Product Customization and Perceived Product Value 89
2.4.1.6 Implications of AM on the Manufacturing Firm and the Market 91
2.4.2 The SLM-Complemented Product Production System (PPS) 92
2.4.2.1 Conflict Field “Product Program” 92
2.4.2.2 Conflict Field “Product Architecture” 93
2.4.2.3 Conflict Field “Production Structure” 95
2.4.2.4 Conflict Field “Supply Chain” 95
2.4.3 Machine-Specific Cost Drivers in Additive Manufacturing (AM) Technologies like Selective Laser Melting (SLM) 97
2.4.3.1 Approach 97
2.4.3.2 Results 99
2.4.3.3 Machine Structure Model 99
2.4.3.4 SLM Reference Process 99
2.4.3.5 Cost Model 100
2.4.3.6 Unit Costs of SLM-Manufactured Parts 104
2.4.3.7 Evaluation of Cost Drivers 110
2.4.3.8 Workpiece Dimension 110
2.4.3.9 SLM Machine Build Envelope 111
2.4.3.10 Laser Beam Sources and Scanner Systems 112
2.4.3.11 Machine Development 114
2.4.4 High-Power Selective Laser Melting (HP SLM) 116
2.4.5 Qualification of Lattice Structures Manufactured by Selective Laser Melting (SLM) for Custom Part Properties 123
2.4.6 High-Manganese Steel Fe-22Mn-0.3C in the Selective Laser Melting (SLM) Process 132
2.5 Profitability Assessment as a Contribution to the Theory of Production 136
2.5.1 Time-to-Market 137
2.5.2 Tooling Costs 138
2.6 Industrial Relevance 140
2.7 Future Research Topics 141
References 144
3 Mold-Based Production Systems 149
3.1 Summary 150
3.2 Motivation and Research Question 153
3.3 State of the Art 156
3.3.1 Methodology for Product and Tool Design 156
3.3.2 Numerical Optimization 159
3.3.3 Application Case Plastics Profile Extrusion 160
3.3.4 Application Case High-Pressure Die Casting 163
3.4 Results 165
3.4.1 Methodology for Product and Tool Design 165
3.4.1.1 Identification of Critical Product Specifications 166
3.4.1.2 Identification of the Degrees of Freedom for Optimizing the Tool Suitability Within the Product 170
3.4.1.3 Systematic Limitation of the Identified Degrees of Freedom 172
3.4.2 Numerical Optimization 174
3.4.2.1 Optimizer 175
3.4.2.2 Flow Solver 176
3.4.2.3 Geometry and Process Kernel 178
3.4.3 Application Case Plastics Profile Extrusion 180
3.4.4 Application Case High-Pressure Die Casting 188
3.4.4.1 Numerical Optimization for High-Pressure Die Casting Dies 190
3.4.4.2 Experimental Die and Measurement Concept 195
3.5 Profitability Assessment as a Contribution to the Theory of Production 199
3.6 Industrial Relevance 202
3.7 Future Research Topics 203
References 206
Virtual Production Systems 211
4 Virtual Production Intelligence (VPI) 213
4.1 Summary 214
4.2 Motivation and Research Question 216
4.2.1 Virtual Production Intelligence (VPI) 216
4.2.2 Research Questions and Solution Hypothesis 217
4.3 State of the Art 219
4.3.1 Information Management 220
4.3.1.1 Information Systems 220
4.3.1.2 Information Modeling 220
4.3.2 Design Domain Factory 221
4.3.2.1 Factory Planning 221
4.3.2.2 Information Management in Factory Planning 223
4.3.2.3 Factory Layout Planning Using Virtual Reality 224
4.3.3 Design Domain Machine 226
4.3.3.1 Modeling of Laser Applications in Manufacturing 226
4.3.3.2 Visualization of Multi-dimensional Data 229
4.4 Results 231
4.4.1 Design Domain Factory 232
4.4.1.1 Sources of Information 232
4.4.1.2 Resources of Information 234
4.4.1.3 Information Product 236
4.4.2 Design Domain Machine 245
4.4.2.1 Sources of Information 245
4.4.2.2 Resources of Information 254
4.4.2.3 Information Product 256
4.5 Profitability Assessment as a Contribution to the Theory of Production 268
4.5.1 Reduction of Time-to-Market 269
4.5.2 Increase of Quality 272
4.5.3 Effects on Development and Investment Costs 272
4.5.4 Conclusions on Profitability 273
4.6 Industrial Relevance 274
4.6.1 Virtual Production Intelligence (VPI) in Factory Planning 274
4.6.2 Metamodeling of Laser Cutting Processes 275
4.7 Future Research Topics 277
4.7.1 Design Domain Factory 277
4.7.2 Design Domain Machine 279
4.7.3 Integrative Scenario 281
References 282
5 Integrated Computational Materials and Production Engineering (ICMPE) 288
5.1 Summary 289
5.2 Motivation and Research Question 290
5.2.1 Topics and Contribution to the Overall Objectives 290
5.2.2 Vision and Research Question 291
5.2.3 Research Questions for the Contributing Scientists 291
5.3 Demonstrator Components and Process Chain 292
5.3.1 Demonstrator 1: Steel Gear 292
5.3.2 Demonstrator 2: Plastic Component 292
5.4 State of the Art 293
5.4.1 Design of a Low-Cost Substitution Steel for Large Gears 293
5.4.2 Continuous Casting of Microalloyed Gear Steels 296
5.4.3 Hot Rolling Multipass Simulation 297
5.4.4 Material Modeling for the Simulation of Hot Forming Processes 298
5.4.5 Warm Forging Process and Its Implications 300
5.4.6 Machining Simulation with Focus on the Material Properties 302
5.4.7 Carburizing Simulation 304
5.4.8 Lifetime Simulation of Steel Gears 306
5.4.9 Multiscale Simulation of Injection Molded Semicrystalline Components 307
5.4.10 Production Planning with ICMPE Framework 309
5.5 Results 310
5.5.1 Design of a Low-Cost Substitution Steel for Large Gears 310
5.5.1.1 Methodology 310
5.5.1.2 Methods for Hardenability Calculation 311
5.5.1.3 Property Characterization 313
5.5.1.4 Conclusion 314
5.5.2 Continuous Casting of Microalloyed Gear Steels 315
5.5.2.1 Microscale—MICRESS 315
5.5.2.2 Macroscale—Abaqus 319
5.5.3 Hot Rolling Multipass Simulation 321
5.5.3.1 Mathematical Modeling from the Single-Pass Level to the Multipass Description 322
5.5.3.2 Numerical Results 326
5.5.3.3 Conclusions and Outlook 327
5.5.4 Material Modeling for the Simulation of Hot Forming Processes 328
5.5.4.1 Procedure 328
5.5.4.2 Material Model and Parameter Determination 329
5.5.4.3 Open Die Forging 331
5.5.4.4 Modeling and Validation of Closed Die Forging 333
5.5.4.5 Conclusions 336
5.5.5 Warm Forging Process and Its Implications 337
5.5.5.1 Computational Simulation of Temperature, Strain Rate, and Nb Element Effects in Conditioning of Austenite 337
5.5.6 Machining Simulation with Focus on the Material Properties 341
5.5.6.1 General Description 341
5.5.6.2 Orthogonal Cutting Process 343
5.5.6.3 Modeling and Validation 349
5.5.6.4 Conclusions 350
5.5.7 Carburizing Simulation 350
5.5.7.1 Introduction 350
5.5.7.2 Case Hardening Process 351
5.5.7.3 Characterization Procedure 354
5.5.7.4 Carburization Simulation 355
5.5.7.5 Case Hardening Simulation (Macroscale) 356
5.5.7.6 Conclusion 357
5.5.8 Lifetime Simulation 358
5.5.8.1 Objective 358
5.5.8.2 Method to Consider Defect Size in the Tooth Root Load-Carrying Capacity Calculation 358
5.5.8.3 Validation 361
5.5.8.4 Summary and Outlook 363
5.5.9 Multiscale Simulation of Injection Molded Semicrystalline Components 363
5.5.9.1 Simulation of the Injection Molding Process 363
5.5.9.2 Prediction of the Microstructure 366
5.5.9.3 Calculation of the Effective Properties by a Two-Level Homogenization Approach 372
5.5.9.4 Application of the Homogenization Scheme 381
5.5.9.5 Effective Material’ Properties and Their Impact on the Global Component’s Behavior 383
5.5.10 Profitability Assessment as a Contribution to the Theory of Production 387
5.5.10.1 Reduction in Time to Market 388
5.5.10.2 Reduction in Development Costs 389
5.5.11 Industrial Relevance 390
5.5.11.1 Design of a Low-Cost Substitution Steel for Large Gears 390
5.5.11.2 Continuous Casting of Microalloyed Gear Steels 390
5.5.11.3 Material Modeling for the Simulation of Hot Forming Processes 391
5.5.11.4 Warm Forging Process and Its Implications 391
5.5.11.5 Machining Simulation with Focus on the Material Properties 391
5.5.11.6 Carburizing Simulation 392
5.5.11.7 Lifetime Simulation 392
5.5.11.8 Multiscale Simulation of Injection Molded Semicrystalline Components 393
5.5.11.9 Kinetic Modeling of Multipass Hot Rolling Processes 393
5.5.12 Future Research and Development Topics 394
References 394
Integrated Technologies 400
6 Multi-technology Platforms (MTPs) 404
6.1 Summary 406
6.2 Motivation and Research Question 407
6.3 Design Methodology for Multi-technology Platforms 408
6.3.1 Introduction 408
6.3.2 State of the Art 410
6.3.2.1 Relevant Approaches in Production Technology 410
6.3.2.2 Approaches in Engineering Design 411
6.3.3 Results 412
6.3.3.1 Adaptive Template Concept for Multi-technology Platforms 412
6.3.3.2 Dilemma of Morphological Analysis 415
6.3.4 Industrial Relevance 419
6.3.5 Conclusions and Outlook 419
6.4 Measurement on Machine Tools and MTPs 420
6.4.1 Introduction 420
6.4.2 State of the Art 420
6.4.3 Results 422
6.4.3.1 Uncertainty Budget for On-Machine Measurement (OMM) 423
6.4.3.2 Examination of Thermal Effects on the Measurement Process 423
6.4.3.3 Concept for an Interim Check for a Fast Calibration of the MTP 428
6.4.4 Industrial Relevance 433
6.4.5 Conclusion and Outlook 434
6.5 Demonstrator Multi-technology Machining Center (MTMC) 434
6.5.1 Introduction 435
6.5.2 State of the Art 437
6.5.3 Results 439
6.5.3.1 Accuracy Behavior of MTP 439
6.5.3.2 Simultaneous Machining 448
6.5.4 Industrial Relevance 453
6.5.5 Conclusion and Outlook 454
6.6 Demonstrator Hybrid Sheet Metal Processing Center 454
6.6.1 Introduction 454
6.6.2 State of the Art 455
6.6.2.1 Previous Results 455
6.6.2.2 Current Research Topics 459
6.6.3 Results 462
6.6.3.1 Process Integration of Postprocesses 463
6.6.3.2 New Process: Formfit Incremental Joining 463
6.6.3.3 Overview of the Hybrid Sheet Metal Processing Center 465
6.6.3.4 Application: Multilayered Free-form Panels 465
6.6.3.5 Process Optimization: Speedup of Incremental Hole Flanging 467
6.6.3.6 Process Optimization: Stretch Forming and ISF 470
6.6.3.7 Process Optimization: Laser-Assisted ISF 471
6.6.4 Industrial Relevance 474
6.6.5 Conclusion and Outlook 476
6.7 Demonstrator Conductive Friction Stir Welding (FSW) Center 477
6.7.1 Introduction 477
6.7.2 State of the Art 477
6.7.2.1 Friction Stir Welding (FSW) 477
6.7.2.2 Simulation of Friction Stir Welding (FSW) Process 479
6.7.3 Results 486
6.7.3.1 Friction Stir Welding (FSW) of Multi-Material Blanks Made from Aluminum and Steel 487
6.7.3.2 Conductive Friction Stir Welding (FSW) 493
6.7.3.3 Simulation of the Friction Stir Welding (FSW) Process 495
6.7.4 Industrial Relevance 500
6.7.5 Conclusion and Outlook 501
6.8 Demonstrator LaserTurn 501
6.8.1 Introduction 501
6.8.2 State of the Art 502
6.8.3 Results 504
6.8.3.1 Shortening of the Process Chain 504
6.8.3.2 Development of New Laser Processes 507
6.8.4 Industrial Relevance 515
6.8.5 Conclusion and Outlook 515
6.9 Economic Efficiency of Manufacturing Technology Integration 515
6.9.1 Introduction 515
6.9.2 State of the ArtState-of-the-Art’ has been changed to ‘State of the Art’ throughout the chapter. Please check. 516
6.10 Profitability Assessment as a Contribution to the Theory of Production 530
6.10.1 Multi-technology Machining Center 530
6.10.1.1 Reduction of Main Process Time 530
6.10.1.2 Reduction of Time-to-Market 531
6.10.2 Hybrid Sheet Metal Processing Center 532
6.10.2.1 Reduction of Time-to-Market 533
6.10.2.2 Increase of Main Process Time 533
6.10.3 Conductive Friction Stir Welding (FSW) 534
6.10.3.1 Reduction of Main Process Time 535
6.10.3.2 Reduction of Main Time per Batch 536
6.10.4 LaserTurn 537
6.10.4.1 Reduction of Production Time per Batch 537
6.10.4.2 Reduction of Auxiliary Process Time 538
6.11 Conclusion and Future Research Topics 539
References 540
7 Multi-technology Products 549
7.1 Summary 550
7.2 Motivation and Research Question 552
7.3 Plastics–Metal Hybrid Parts for Electrical Applications 553
7.3.1 Introduction 553
7.3.2 State of the Art 554
7.3.2.1 Technologies for the Production of Plastics/Metal Hybrid Parts 554
7.3.2.2 The In-Mold Metal Spraying (IMMS) Process 555
7.3.2.3 Adhesion of Plastics and Metal Within the IMMS Process 556
7.3.3 Results 557
7.3.3.1 Feasibility Study with Different Thermal Spraying Methods 557
7.3.3.2 Feasibility Study with Cold Gas Spraying 558
7.3.3.3 Feasibility Study with Wire Arc Spraying 565
7.3.3.4 Influence of the Plastic Component on the Transfer of an Arc Sprayed Zinc Coating 569
7.3.3.5 Transferability of Partial Sprayed Layers on Flat Plastic Components 571
7.3.3.6 Transferability on Plastic Components with Complex Geometrically Structured Surfaces 572
7.3.4 Profitability Assessment as a Contribution to the Theory of Production 574
7.3.4.1 Increase of Product Variants 575
7.3.4.2 Reduction in Main Process Time 576
7.3.5 Industrial Relevance 576
7.3.6 Conclusion and Outlook 578
7.4 Manufacture of Plastic Components with Optical Microstructures 578
7.4.1 Introduction 578
7.4.2 State of the Art 579
7.4.3 Results 585
7.4.3.1 Optics Design for Polymer Optics 585
7.4.3.2 Microstructuring with USP Lasers 592
7.4.3.3 Nanostructuring with MBI 596
7.4.3.4 Synthesis and Analysis of Hard Coatings Produced by Means of PVD 601
7.4.3.5 Development of the Laser-Based Temperature Control into a Mold-External Process 611
7.4.3.6 Development of a Variothermal Extrusion Embossing Process for the Replication of Microstructures on Polycarbonate and Polymethylmethacrylate Films 614
7.4.4 Profitability Assessment as a Contribution to the Theory of Production 618
7.4.5 Industrial Relevance 621
7.4.6 Conclusion and Outlook 622
7.5 Plastic–Metal Hybrids for Structural Applications 623
7.5.1 Introduction 623
7.5.2 State of the Art 623
7.5.2.1 Comparison of Material Properties—Aluminum Versus Polyamide 6 623
7.5.2.2 Joining Methods for Thermoplastics and Metals 624
7.5.2.3 Post-Mold Assembly (PMA) 625
7.5.2.4 In-Mold Assembly (IMA) 625
7.5.3 Results 626
7.5.3.1 Thermal Direct Joining of Metal–Plastic Hybrid Structures 626
7.5.3.2 Crash Simulation of Metal–Plastics Hybrid Structures 633
7.5.3.3 Multi-material High-pressure Die Casting 641
7.5.4 Profitability Assessment as a Contribution to the Theory of Production 649
7.5.5 Industrial Relevance 650
7.5.6 Conclusion and Outlook 651
7.6 Future Research Topics 652
References 656
Self-optimizing Production Systems 662
Part4 674
8 Cognition-Enhanced, Self-optimizing Production Networks 677
8.1 Summary 678
8.2 Motivation and Research Question 681
8.2.1 Motivation 681
8.2.2 State of the Art 681
8.2.3 Concept of Self-optimizing Production Networks 683
8.2.4 Structure 684
8.3 Intercompany Material and Information Flow 686
8.3.1 Introduction 686
8.3.2 State of the Art 687
8.3.3 Results 689
8.3.4 Profitability Assessment as a Contribution to the Theory of Production 717
8.3.5 Industrial Relevance 718
8.3.6 Conclusion and Outlook 720
8.4 Self-optimizing Production Planning and Control 721
8.4.1 Introduction 721
8.4.2 State of the Art 721
8.4.3 Results 723
8.4.4 Profitability Assessment as a Contribution to the Theory of Production 730
8.4.5 Industrial Relevance 732
8.4.6 Conclusion and Outlook 733
8.5 Cognition-Enhanced Self-optimizing Production Lines 733
8.5.1 Introduction 733
8.5.2 State of the Art 735
8.5.3 Results 740
8.5.4 Profitability Assessment as a Contribution to the Theory of Production 763
8.5.5 Industrial Relevance 764
8.5.6 Conclusion and Outlook 765
8.6 Conclusion and Future Research Topics 767
References 768
9 Self-optimizing Production Technologies 776
9.1 Summary 777
9.2 Motivation and Research Question 779
9.3 Approaches to Self-optimize Technical Systems 781
9.3.1 State of the Art of Self-optimizing Production Technologies 781
9.3.1.1 Progress in Self-optimization of Technical Systems 781
9.3.1.2 Progress in Modeling of Complex Manufacturing Processes 786
9.3.2 Results 791
9.3.2.1 Self-optimization of Technical Systems 791
9.3.2.2 Modeling of Complex Manufacturing Processes 793
9.4 Manufacturing Processes 802
9.4.1 Model-Based Self-optimizing (MBSO) Manufacturing System for Laser Cutting 803
9.4.1.1 State of the Art of Laser Cutting 804
9.4.1.2 Approach for a MBSO System in Laser Cutting 806
9.4.1.3 Results of the MBSO System in Laser Cutting 812
9.4.2 Model-Based Self-optimizing (MBSO) in Gas Metal Arc Welding 815
9.4.2.1 State of the Art of Optimizing Gas Metal Arc Welding 816
9.4.2.2 Approach for a MBSO System in Gas Metal Arc Welding (GMAW) 818
9.4.2.3 Results of the MBSO System in Gas Metal Arc Welding (GMAW) 823
9.4.3 Self-optimized Process Control of the Gun Drilling Process 824
9.4.3.1 State of the Art of Optimizing Gun Drilling Processes 824
9.4.3.2 Approach for a MBSO System in Gun Drilling 825
9.4.3.3 Results of the MBSO System in Gun Drilling 832
9.4.4 Model-Based Predictive Force Control in Milling 832
9.4.4.1 State of the Art of Force Control in Milling 833
9.4.4.2 Approach of a MBSO System for Force Control 834
9.4.4.3 Results of the MBSO System for Force Control in Milling 835
9.4.5 Self-optimizing Injection Molding 845
9.4.5.1 State of the Art of Optimizing Injection Molding 846
9.4.5.2 Approach of a MBSO System in Injection Molding 847
9.4.5.3 Results of the MBSO System in Injection Molding 852
9.4.6 Self-optimized Braiding 854
9.4.6.1 State of the Art of Optimizing Braiding 855
9.4.6.2 Approach of a MBSO System in Braiding 857
9.4.6.3 Results of the MBSO System in Braiding 861
9.4.7 Self-optimized Weaving 862
9.4.7.1 State of the Art of Optimizing Weaving 863
9.4.7.2 Approach of a MBSO System in Weaving 865
9.4.7.3 Multi-objective Self-optimization (MOSO) 870
9.4.7.4 Results of the MBSO System in Weaving 871
9.4.8 Self-optimizing Inspection System 872
9.4.8.1 State of the Art of Haptic Testing 874
9.4.8.2 Approach of a MBSO System in Testing 875
9.4.8.3 Results of the MBSO System in Testing 879
9.5 Profitability Assessment as a Contribution to the Theory of Production 880
9.5.1 Manufacturing Time 881
9.5.1.1 Saving Auxiliary Process Time by Improved Setup Processes Through Model-Based Self-optimization 882
9.5.1.2 Increase in Productivity by Reducing the Main Process Time Through Process Monitoring and Self-optimized Parameter Adaption 885
9.5.1.3 Reduction in Machine-Hour Rate by Condition-Based Maintenance and Tool Change 887
9.5.2 Quality 890
9.5.3 Industrial Relevance 891
9.5.4 Future Research Topics 894
9.5.4.1 Integration of Self-optimizing Manufacturing Systems into Superordinate Planning Levels 894
9.5.4.2 Selected Research Topics 897
References 899
10 Cognition-Enhanced, Self-optimizing Assembly Systems 907
10.1 Summary 908
10.2 Motivation and Research Question 909
10.2.1 Self-optimization in Industrial Assembly 911
10.2.2 Self-optimization in the Use Case of Airplane Structure Elements 913
10.2.3 Self-optimization in the Use Case of Optical Components 914
10.3 State of the Art 914
10.3.1 Assembly of Large Components in Aerospace Production 914
10.3.1.1 Airplane Structure 915
10.3.1.2 Handling Systems in the Aircraft Structure Assembly 916
10.3.1.3 Measurement Technology for Large Volumes 919
10.3.1.4 Challenges and Deficits of the State of the Art 920
10.3.2 Assembly Technologies for Optical Systems 920
10.3.3 Results from the First Project Phase 923
10.4 Results 927
10.4.1 Self-optimizing Assembly of Large-Scale Components 933
10.4.1.1 Handling System 935
10.4.1.2 Measurement System and Process Identification 949
10.4.1.3 Model-Based Process Control 959
10.4.1.4 Virtualization of Self-optimizing Assembly Processes 968
10.4.2 Self-optimizing Assembly of Optical Systems 973
10.4.2.1 Planning of Self-optimizing Optics Assembly Processes 974
10.4.2.2 Function-Oriented Assembly 984
10.4.2.3 Assembly-Compatible Multifunctional Integrated Laser Systems 993
10.5 Profitability Assessment as Contribution to the Theory of Production 1002
10.5.1 Environmental Assessment of Self-optimizing Assembly Systems 1004
10.5.2 Comprehensive Goal Systems for Decision-Making 1006
10.5.3 Exemplary Cost Assessment for the Demonstrators 1007
10.6 Industrial Relevance 1010
10.7 Future Research Topics 1012
References 1014
Cross-Sectional Processes 1021
11 Scientific Cooperation Engineering 1023
11.1 Summary 1024
11.2 Motivation and Research Question 1025
11.3 State of the Art and Results of Scientific Cooperation Engineering 1027
11.3.1 Continuous Formative Evaluation 1027
11.3.1.1 State of the Art 1028
11.3.1.2 Method 1028
11.3.1.3 Results and Discussion 1029
11.3.1.4 Outlook 1030
11.3.2 Critical Incidents of Interdisciplinary Research 1031
11.3.2.1 State of the Art 1031
11.3.2.2 Method 1032
11.3.2.3 Results 1032
11.3.2.4 Future Studies on CIs 1034
11.3.3 Intercultural Diversity Management—Age and Culture Effects in Cluster Research 1035
11.3.3.1 State of the Art 1035
11.3.3.2 Method 1036
11.3.3.3 Results 1037
11.3.4 Physical Networking and Tailor-Made Trainings as Means for Cluster Development 1041
11.3.4.1 State of the Art 1041
11.3.4.2 Method: Design of Colloquia of Employees 1042
11.3.4.3 Results: Developmental Stages and Evaluation 1043
11.3.4.4 Interdisciplinary Training and Next-Level Learning Concepts 1044
11.3.5 Interdisciplinary Innovation Management 1045
11.3.5.1 State of the Art 1045
11.3.5.2 Methods: Benefits and Barriers of Interdisciplinary Collaboration in the Cluster of Excellence 1046
11.3.5.3 Results from the Benefits and Barriers of Interdisciplinary Collaboration Study 1047
11.3.5.4 Discussion 1048
11.3.5.5 Mapping to the Scientific Cooperation Portal 1048
11.3.6 Scientific Cooperation Portal 1049
11.3.6.1 State of the Art 1050
11.3.6.2 Method 1050
11.3.6.3 Quantitative Usage Analysis 1051
11.3.6.4 Qualitative User Questionnaire 1052
11.3.6.5 Usage Barriers and Usability Findings 1053
11.3.6.6 Outlook: Intelligent Inquiry Tools and Information Linking 1054
11.3.7 Cluster Terminologies: Data Science in Cooperation Engineering 1054
11.3.7.1 State of the Art 1054
11.3.7.2 Method: Terminology Framework 1055
11.3.7.3 Terminology App Functionalities 1057
11.3.8 Visualization of Collaboration as a Means to Support Interdisciplinary Cooperation and Integration 1059
11.3.8.1 State of the Art 1059
11.3.8.2 Publication Visualization on the Scientific Cooperation Portal 1060
11.3.8.3 Evaluation of the Visualizations 1061
11.3.8.4 Interdisciplinary Publication Workshops 1062
11.3.9 Research Planning Using the FlowChart Tool 1063
11.3.9.1 State of the Art 1063
11.3.9.2 Method 1064
11.3.9.3 Requirement Analysis 1064
11.3.9.4 The FlowChart Tool 1066
11.3.9.5 Implementation 1067
11.3.9.6 Results 1067
11.3.9.7 Future Research and Development 1068
11.4 Industrial Relevance 1068
11.5 Future Research Topics 1071
References 1072
12 Towards a Technology-Oriented Theory of Production 1077
12.1 Summary 1077
12.2 Research Motivation 1078
12.3 State of the Art 1080
12.3.1 Production Theory Models 1080
12.3.2 Classification of the Technology-Oriented Theory of Production 1084
12.4 Results 1087
12.4.1 Operationalization of Technological Advances Within the CoE Towards Their Impact on Profitability 1089
12.4.2 Operationalization Towards the Impact on Sales 1089
12.4.3 Operationalization Towards the Impact on Fixed Costs 1095
12.4.4 Operationalization Towards the Impact on Variable Costs 1098
12.5 Conclusion 1104
References 1106
13 Technology Platforms 1110
13.1 Summary 1110
13.2 Motivation and Research Question 1111
13.3 State of the Art 1111
13.4 Results 1112
13.4.1 External and Internal Communication 1112
13.4.1.1 Technology Transfer Office PROTECA 1112
13.4.1.2 CoE Website 1113
13.4.1.3 Cooperation Portals 1113
13.4.2 Spin-Offs, Centers, and Further Research Projects 1114
13.4.2.1 High Resolution Production Management 1115
13.4.2.2 Integrative Light Weight Engineering 1115
13.4.2.3 Synchronized Tool and Die Production 1116
13.4.2.4 Photonics Production 1116
13.4.2.5 Sheet and Profile Prototyping 1116
13.4.2.6 Production Engineering for E-Mobility Components 1117
13.5 Conclusion and Outlook 1117
References 1118
Index 1119

Erscheint lt. Verlag 9.1.2017
Zusatzinfo XXXIX, 1100 p. 651 illus., 482 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik
Technik
Wirtschaft Betriebswirtschaft / Management Logistik / Produktion
Wirtschaft Betriebswirtschaft / Management Planung / Organisation
Schlagworte Deterministic models for integrative production • Engineering Economics • Harmonized cybernetic models • Holistic theory of production • Individualized Production • Production technology for high-wage countries
ISBN-10 3-319-47452-9 / 3319474529
ISBN-13 978-3-319-47452-6 / 9783319474526
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
PDFPDF (Wasserzeichen)
Größe: 50,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Null-Fehler-Management in der Praxis

von Kurt Matyas; Berndt Jung; Stefan Schweißer

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
49,99
Manufacturing Excellence in der Smart Factory

von Jürgen Kletti; Jürgen Rieger

eBook Download (2023)
Springer Vieweg (Verlag)
69,99