Spacecraft TT&C and Information Transmission Theory and Technologies (eBook)

(Autor)

eBook Download: PDF
2014 | 1. Auflage
XI, 543 Seiten
Springer-Verlag
978-3-662-43865-7 (ISBN)

Lese- und Medienproben

Spacecraft TT&C and Information Transmission Theory and Technologies -  Jiaxing Liu
Systemvoraussetzungen
160,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Spacecraft TT&C and Information Transmission Theory and Technologies introduces the basic theory of spacecraft TT&C (telemetry, track and command) and information transmission. Combining TT&C and information transmission, the book presents several technologies for continuous wave radar including measurements for range, range rate and angle, analog and digital information transmissions, telecommand, telemetry, remote sensing and spread spectrum TT&C. For special problems occurred in the channels for TT&C and information transmission, the book represents radio propagation features and its impact on orbit measurement accuracy, and the effects caused by rain attenuation, atmospheric attenuation and multi-path effect, and polarization composition technology. This book can benefit researchers and engineers in the field of spacecraft TT&C and communication systems.

Liu Jiaxing is a professor at The 10th Institute of China Electronics Technology Group Corporation.



Jiaxing Liu is a professor at the 10th Research Institute of China Electronics Technology Group Corporation, where for the past 40 years he had participated in vital research pertaining to the design of various space TTC systems. He is a winner of Chinese Manned Space Outstanding Contributions Award, National Science and Technology Progress Awards, and National Defense Science and Technology Progress Awards. He has published over 100 papers, 4 books, and a paper collection on related subjects.

Jiaxing Liu is a professor at the 10th Research Institute of China Electronics Technology Group Corporation, where for the past 40 years he had participated in vital research pertaining to the design of various space TTC systems. He is a winner of Chinese Manned Space Outstanding Contributions Award, National Science and Technology Progress Awards, and National Defense Science and Technology Progress Awards. He has published over 100 papers, 4 books, and a paper collection on related subjects.

Foreword 6
Contents 8
Chapter 1: Introduction 13
1.1 General 13
1.2 TTandC and Information Transmission 14
1.3 Tasks, Functions, and Classification of TTandC and Information Transmission 15
1.4 Engineering Applications of TTandC and Information Transmission Technologies [3] 21
1.4.1 Unified Carrier CandT System [4] 21
1.4.2 Space-Based CandT System [3] 22
1.4.3 Deep-Space CandT System [5, 6] 23
1.4.4 Phased Array CandT System [7] 24
1.4.5 High-Accuracy Missile Range-Measuring System [3] 25
1.4.6 Near-Space Vehicle TTandC and Information Transmission System [8] 25
References 26
Chapter 2: Theories and Technologies of Tracking and Orbit-Measuring 27
2.1 General 27
2.2 Localization and Orbit-Measuring 28
2.2.1 Localization 28
2.2.2 Station Distribution Geometry and Localization Accuracy 33
2.2.2.1 RAE Localization System 34
2.2.2.2 ``Angle Intersection´´ Localization 35
2.2.2.3 ``Range Intersection´´ Localization 37
2.2.3 Trajectory Measurement System 42
2.2.3.1 RAE System 42
2.2.3.2 Multi- System 42
2.2.3.3 Rlm System 42
2.2.3.4 Rri System 43
2.2.3.5 Multi-AE System 43
2.2.3.6 Multi- System 44
2.3 Velocity-Measuring Theory and Technology: Two-Way, Three-Way, and Single-Way Velocity-Measuring Technologies 45
2.3.1 CW Velocity-Measuring 45
2.3.2 Doppler Frequency Measurement Method 48
2.3.3 Theoretical Analysis of Two-Way Coherent Doppler Velocity-Measuring Error 51
2.3.3.1 Phase Noise Power Spectrum Density and Allan Variance [4, 6] 51
2.3.3.2 Theoretical Analysis of Two-Way Coherent Doppler Velocity-Measuring Error 60
Time Domain Analysis Method for Velocity Measurement Accuracy 60
Frequency Domain Analysis Method of Velocity Measurement Accuracy [3] 74
2.3.4 Three-Way Noncoherent Doppler Velocity Measuring and Measuring 81
2.3.5 Two-Way Noncoherent Doppler Velocity Measuring 84
2.3.5.1 Ground Counteracting 85
2.3.5.2 Measuring in the Air and Processing on the Ground 87
2.3.5.3 Onboard Counteracting 89
2.3.6 One-Way Noncoherent Doppler Velocity Measuring 91
2.3.7 Theoretical Calculation of Velocity-Measuring Accuracy 93
2.3.7.1 Random Error 94
2.3.7.2 Velocity-Measuring System Error 97
2.4 Ranging Techniques Theory and Technology: Two-Way, Three-Way, and Single-Way Ranging Technologies 98
2.4.1 Continuous Wave Two-Way Ranging Methods 98
2.4.1.1 Tone Ranging System 98
2.4.1.2 Pseudorandom Code (PN Code) Ranging System 109
2.4.1.3 Hybrid Ranging System of Code and Tone 112
2.4.2 Vector Analysis Method of Ranging Error 116
2.4.3 Group Delay Characteristics Analysis Method of Ranging Error [12] 125
2.4.3.1 Group Delay Analysis Method of Tone Ranging Error [12] 125
2.4.3.2 Group Delay Characteristics Analysis Method of PN Code Ranging Error and Spread Spectrum Ranging Error [13] 133
2.4.4 Random Ranging Error 136
2.4.4.1 Ranging Error Introduced by Thermal Noise 136
2.4.4.2 Ranging Error Caused by Short-Term Stability of Ranging Signal 137
2.4.5 Theoretical Calculation of Ranging Accuracy 143
2.4.6 One-Way Ranging Technique 147
2.4.6.1 One-Way Ranging by Interferometer 148
2.4.6.2 One-Way Ranging Technique by the Time Synchronization Between Satellite and Earth 150
2.4.7 Three-Way Ranging Technique 151
2.4.8 Deep-Space Ranging System 152
2.5 Angle Measurement Theory and Technology 155
2.5.1 Angle Measurement Using Antenna Tracking - Three-Channel, Dual-Channel, and Single-Channel Monopulse Technologies 155
2.5.1.1 Three-Channel Monopulse (TCM) System 156
2.5.1.2 Dual-Channel Monopulse System (DCM) 158
2.5.1.3 Single-Channel Monopulse System (SCM) 160
2.5.2 Angle Measurement with Interferometer 167
2.5.2.1 Phase Difference Interferometer 167
2.5.2.2 Time-Delay Difference Interferometer 171
2.5.2.3 Deep-Space TTandC Application with Interferometer 172
2.5.3 Theoretical Calculation of Angle Tracking Accuracy [20] 175
2.5.4 Theoretical Analysis of Angle Tracking of Wideband Signal - Cross-Correlation Function Method 179
2.5.5 Angle Measurement by Phased Array Tracking and Angle Measurement Accuracy - Space Window Sliding and Projective Plane Me... 190
2.5.5.1 Angle Measurement Principle by Phased Array Tracking 190
2.5.5.2 Monopulse Tracking of Planar Phased Array - Projective Plane Method 195
2.5.5.3 Angle Tracking of Curved Surface Phased Array - Space Window Sliding Method 198
2.5.5.4 Time-Sharing Multi-target Tracking, Simultaneous Multi-target Tracking, and Adaptive Tracking 207
2.5.5.5 Angle Measurement Accuracy of Phased Array Tracking 209
2.5.6 Independent Guidance, Self-Guidance, and Multi-beam Guidance 211
2.5.6.1 Independent Guidance 211
2.5.6.2 Self-Guidance 214
2.5.6.3 Multi-beam Guidance 220
2.5.7 Polarization Diversity-Synthesized Technology of Angle Tracking 229
2.5.7.1 Function of Polarization Diversity-Synthesized Technology 229
2.5.7.2 Mode and Principle of Signal Synthesis 231
2.5.7.3 Polarization Synthesis Scheme of Angle Tracking Channel 234
References 237
Chapter 3: Information Transmission Technologies 239
3.1 Analog Transmission Technology in CandT 240
3.1.1 Analog Signal Modulation 240
3.1.1.1 Mode of Analog Phase Angle Modulation 241
3.1.1.2 Frequency Spectrum of Phase Angle Modulation Wave 244
3.1.1.3 Nonlinear PM Characteristics 246
3.1.2 Demodulation of Analog Signal 248
3.1.2.1 Demodulation of Noise Plus Signal Through an Ideal Multiplier 249
3.1.2.2 Demodulation for Phase Discriminator with Non-ideal Sinusoidal Characteristic 253
3.1.3 Two-Way Carrier Acquisition in CandT - ``Frequency Sweep to Acquisition´´ and ``Following Sweep Slope Determination´´ [1] 254
3.1.4 Combined Interference in the Unified Carrier CandT System - ``Modulation/Demodulation Integration Characteristic Analysi... 262
3.2 Digital Signal Transmission Technology in CandT 271
3.2.1 Overview 271
3.2.2 Optimum Transmission Response of Digital Signal Transmission [7] 273
3.2.2.1 Optimum Receiving of Binary Digital Signal 274
3.2.2.2 Optimum Receiving of ``Non-bandlimited´´ Linear System 275
3.2.2.3 Optimum Transmission Response of ``Bandlimited´´ Linear System 277
3.2.3 Digital Modulation/Demodulation Technology 279
3.2.3.1 Requirements of Vehicle CandT and Information Transmission System for Modulator/Demodulator 279
3.2.3.2 Modulation Mode with the Highest Bandwidth Efficiency-Nyquist Bandlimited Modulation 282
3.2.3.3 Modulation Mode with High Power Efficiency 284
3.2.3.4 Quasi-constant Envelope Modulation 287
3.2.3.5 Comparison of Various Modulation Modes [11, 12] 289
3.2.4 Channel Coding/Decoding Technology 289
3.2.4.1 Characteristics of Channel Coding/Decoding in Vehicle CandT and Information Transmission System 289
3.2.4.2 Basic Concept of ``Shannon Limit´´ and Channel Coding 290
3.2.4.3 RS Encoding 293
3.2.4.4 Error Detection Code 294
3.2.4.5 BCH Coding 295
3.2.4.6 Convolution Code 295
3.2.4.7 Concatenated Code 296
3.2.4.8 Interleave Coding 298
3.2.4.9 Turbo Code 299
3.2.4.10 Low Density Parity Check Code (LDPC Code) 300
3.2.4.11 Unification of Error-Correction Coding and Modulation 301
3.2.5 Impacts of Noise on Data Transmission BER - Amplitude Noise Equivalent Method 303
3.2.5.1 Relationships Between AWGN and PSK Signal BER 303
3.2.5.2 Relationships of Signal Source Phase Noise and BER - ``Amplitude - Noise Equivalent Method´´ [15] 304
3.2.6 Impacts of Linear Distortion on Data Transmission BER 309
3.2.6.1 Relationships of Phase Frequency Characteristic and BER 309
3.2.6.2 Relationships of Amplitude Frequency Characteristic and BER 312
3.2.6.3 Relationships of Coherent Carrier Phase Error and BER [18] 316
3.2.6.4 Impacts of Phase Error of Phase Modulator on BER 317
3.2.6.5 Impacts of Deviation of Bit Timing Pulse on BER 318
3.2.6.6 Relationships of Judgment Threshold Level Changes and BER 318
3.2.6.7 Impacts of Standing Wave and Multipath Reflection on BER 319
3.2.7 Impacts of Non-linear Distortion on Data Transmission BER 320
3.2.7.1 Characteristics of Channel Nonlinearity 320
3.2.7.2 Impacts of AM-PM on Bit Error Rate 323
3.2.7.3 Impacts of Band-Limited Non-constant Envelope on Bit Error Rate 324
3.2.7.4 Frequency Spectrum Spreading Effect Caused by Channel Nonlinearity 327
3.2.7.5 Impacts of Nonlinearity on Frequency-Division Multiplex (FDM) Performance 328
3.2.7.6 Measures for Reducing Nonlinearity Impacts 332
3.3 Information Transmission Techniques for Telemetry, Command and Remote Sensing 334
3.3.1 Information Transmission Techniques for Telemetry 334
3.3.1.1 Telemetry Overview 334
3.3.1.2 Basic Model of Telemetry Information Transmission System 336
3.3.1.3 Deep Space Telemetry Technique 342
3.3.2 Command Information Transmission Technology 346
3.3.2.1 Overview of Command 346
3.3.2.2 Composition and Work Process 348
3.3.2.3 Command System 350
3.3.2.4 Basic Model of Command Information Transmission System 351
3.3.2.5 Command Error Control Techniques 355
3.3.3 Remote Sensing Information Transmission Technique 359
3.3.3.1 Remote Sensing Overview 359
3.3.3.2 Basic Model and Main Technical Issues of Remote Sensing Information Transmission 361
3.3.3.3 High-Speed Data Modulation/Demodulation 367
3.3.3.4 Function and Composition of Remote Sensing Information Receiving System 369
References 371
Chapter 4: Spread Spectrum TTandC 373
4.1 General 373
4.2 Features of Spread Spectrum TTandC 374
4.3 Basic Methods for Spread Spectrum TTandC 377
4.3.1 Direct Sequence Spread Spectrum (DSSS) 378
4.3.1.1 Binary Phase Shift Keying (BPSK) DSSS 378
4.3.1.2 Quadrature Phase Shift Keying (QPSK) DSSS 381
4.3.2 Frequency Hopping Spread Spectrum (FHSS) 384
4.3.3 Hybrid Spread Spectrum of DSSS and FHSS 387
4.3.4 Time Hopping Spread Spectrum 387
4.3.5 Code Hopping 388
4.3.5.1 Concept of ``Code Hopping´´ 388
4.3.5.2 Generation of Code Hopping Sequence 389
4.3.5.3 Synchronization of Code Hopping Sequence 390
4.3.5.4 High-Order Full-Permutation Code 391
4.4 Acquiring and Tracking of Spread Spectrum TTandC Signals 392
4.4.1 Acquiring and Tracking of DSSS Signals 392
4.4.2 Acquiring and Tracking of Frequency Hopping Spread Spectrum Signals 398
4.4.3 Velocity Measuring of Frequency Hopping Spread Spectrum-``Two-Step Method´´ Frequency Hopping Velocity Measuring 400
4.5 Measuring Accuracy and Tracking Threshold for Direct Spread Spectrum TTandC 403
4.5.1 Phase Error in Carrier Loop of Spread Spectrum Receiver 404
4.5.2 Range Measurement Error in Spread Spectrum TTandC 405
4.5.3 Rate Measurement Error in Spread Spectrum TTandC 407
4.6 ``Double Spread Spectrum´´ and Its Application in TDRSS 407
4.6.1 Problems Raised 407
4.6.2 ``Code Division Multiplexing´´ and ``Double Spread Spectrum´´ 408
4.6.3 Main Technical Problems of ``Double Spread Spectrum´´ 410
4.7 Chaotic Sequence and Chaotic Spread Spectrum TTandC [5] 413
4.7.1 Characteristics of Chaotic Sequence 413
4.7.2 Type, Selection, and Generation of Chaotic Sequence [6] 417
4.7.2.1 Type of Chaotic Sequence 417
4.7.2.2 Selection of Chaotic Sequence 419
4.7.2.3 Generation of Code Library 421
4.7.3 Synchronization and Ranging of Chaotic Spread Spectrum Signals 426
4.7.3.1 ``Chaotic Code Hopping´´-Based Synchronization Method of an Infinite Chaotic Sequence - ``Following Water Access Metho... 426
4.7.3.2 Synchronization Scheme by Taking the Received Spread Spectrum Sequence as the Initial Value of Iteration at the Receiv... 429
4.7.3.3 Differential Chaos Shift Keying (DCSK) Scheme 430
4.7.3.4 A Ranging Scheme for the Infinite Chaotic Sequence 432
References 436
Chapter 5: Special Issues on Radio Transmission Channel in CandT 437
5.1 CandT Frequency Band Developing to Ka-Band and Optical Bands 437
5.1.1 Principle for Selecting CandT Frequency Band [1] 437
5.1.2 Development Trend 440
5.1.2.1 Increase to Ka-Band 441
5.1.2.2 Optical Communication Technology 441
5.1.3 Background of Developing Ka-Band CandT System [2] 442
5.1.4 Characteristics of Ka-Band CandT System 444
5.1.5 Main Technical Issues of Ka-Band CandT System 448
5.2 Rain Attenuation and Atmospheric Attenuation in Signal Transmission Channel [5] 450
5.2.1 Significance of Rain Attenuation Study 450
5.2.2 Characteristics of Rain Attenuation 451
5.2.3 Calculation of Rain Attenuation 451
5.2.4 Increment in System Noise Temperature Caused by Rainfall 458
5.2.5 Rain Attenuation Countermeasure Technology 458
5.2.6 Atmospheric Attenuation in Signal Transmission Channel 462
5.3 Influence of Multipath Transmission [7] 465
5.3.1 Three Types of Fast Fading Caused by Multipath Effect 467
5.3.1.1 Frequency Selective Fading 467
5.3.1.2 Space Selectivity Fading 468
5.3.1.3 Time Selectivity Fading 469
5.3.2 Nature of Reflection Coefficient 470
5.3.2.1 Electromagnetic Reflection Coefficient 470
5.3.2.2 Circular Polarization Reflection Coefficient 473
5.3.2.3 Reflection Coefficient of Rough Surface 474
5.3.3 Path Loss and Scintillation Fading in Case of Multipath Propagation 475
5.3.3.1 Path Loss in Case of Multipath Propagation 475
5.3.3.2 Scintillation Fading Caused by Multipath Propagation 479
5.3.4 Orbit Determination Error Caused by Multipath Propagation 480
5.3.4.1 Effect of Multipath Interference on Velocity-Measuring Accuracy 480
5.3.4.2 Effect of Multipath Interference on Ranging Accuracy 481
5.3.4.3 Effect of Multipath Interference on Angle-Measuring Accuracy 481
5.3.5 Effect of Multipath Interference on Data Transmission Bit Error Rate 484
5.3.5.1 Narrowband Fading Channel 485
5.3.5.2 Wideband Fading Channel 485
5.3.6 Anti-multipath Interference Measures 487
5.3.6.1 Decrease Multipath Signal to Improve S/J 488
5.3.6.2 Signal Extraction Under Low S/J 494
5.4 New Methods for Simulation and Calibration 510
5.4.1 Dynamic Simulation Method Based on Motion Equation 510
5.4.2 Phase Calibration Using Radio Star Noise [12, 13] 515
5.4.2.1 Basic Principle 515
5.4.2.2 ``Phase Calibration´´ With RS Wideband 516
5.4.2.3 Radio Star Narrowband Phase Calibration 518
5.4.3 On-Orbit Phase Calibration by Measuring ``Cross-Coupling´´ Value 520
5.4.4 Geometric Optics Application for Range Calibration 523
5.4.4.1 Geometric Optics and Physical Optics 523
5.4.4.2 Geometric Relationship of Parabolic Antenna 524
5.4.4.3 Offset-Feed Zero-Range Calibration Based on Geometric Optics 525
5.4.5 Effect of Radio Wave Propagation Characteristic on Orbit Determination Accuracy 528
5.4.6 Tropospheric Radio Wave Refraction Error Correction 534
5.4.6.1 Range Error Correction 534
5.4.6.2 Correction of Angle-Measuring Accuracy Error from Tropospheric Refraction 535
5.4.6.3 Tropospheric Refraction Velocity Error Correction 536
5.4.7 Ionospheric Refraction Correction Methods 537
5.4.8 Factors Affecting Correction Accuracy 542
References 543

Erscheint lt. Verlag 4.9.2014
Reihe/Serie Springer Aerospace Technology
Zusatzinfo XI, 531 p. 265 illus., 53 illus. in color.
Verlagsort Berlin
Sprache englisch
Themenwelt Technik Luft- / Raumfahrttechnik
Technik Nachrichtentechnik
Schlagworte Information Transmission • Spacecraft Communication • Spacecraft Tracking • Space Technology • Telemetry, Tracking and Command (TT&C) • Tracking and Orbit Measurement
ISBN-10 3-662-43865-8 / 3662438658
ISBN-13 978-3-662-43865-7 / 9783662438657
Haben Sie eine Frage zum Produkt?
Wie bewerten Sie den Artikel?
Bitte geben Sie Ihre Bewertung ein:
Bitte geben Sie Daten ein:
PDFPDF (Wasserzeichen)
Größe: 11,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Physikalisch-mathematische Grundlagen

von Georg Bräunling

eBook Download (2022)
Carl Hanser Verlag GmbH & Co. KG
249,99