Optimal Urban Networks via Mass Transportation
Springer Berlin (Verlag)
978-3-540-85798-3 (ISBN)
Recently much attention has been devoted to the optimization of transportation networks in a given geographic area. One assumes the distributions of population and of services/workplaces (i.e. the network's sources and sinks) are known, as well as the costs of movement with/without the network, and the cost of constructing/maintaining it. Both the long-term optimization and the short-term, "who goes where," optimization are considered. These models can also be adapted for the optimization of other types of networks, such as telecommunications, pipeline or drainage networks. In the monograph we study the most general problem settings, namely, when neither the shape nor even the topology of the network to be constructed is known a priori.
Problem setting.- Optimal connected networks.- Relaxed problem and existence of solutions.- Topological properties of optimal sets.- Optimal sets and geodesics in the two-dimensional case.
Erscheint lt. Verlag | 3.12.2008 |
---|---|
Reihe/Serie | Lecture Notes in Mathematics |
Zusatzinfo | X, 150 p. 15 illus. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 264 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Wirtschaft ► Betriebswirtschaft / Management | |
Schlagworte | 49J45, 49Q10, 49Q15, 49Q20, 90B06, 90B10, 90B20 • area • Communication • Distribution • EXIST • mass transportation • measure theory • Network • Networks • optimal networks • Optimization • Service • Sets • Topology • Types • urban planning |
ISBN-10 | 3-540-85798-2 / 3540857982 |
ISBN-13 | 978-3-540-85798-3 / 9783540857983 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich