Complex-Valued Econometrics with Examples in R - Sergey Svetunkov, Ivan Svetunkov

Complex-Valued Econometrics with Examples in R

Modelling, Regression and Applications
Buch | Hardcover
XI, 154 Seiten
2024 | 2024
Springer International Publishing (Verlag)
978-3-031-62607-4 (ISBN)
106,99 inkl. MwSt

This book explores the application of complex variables to econometric modeling. Providing a thorough introduction to the theory of complex numbers, it extends these concepts to develop complex-valued models that enhance the accuracy and depth of economic forecasting and data analysis. From simple to multiple complex linear regression, the monograph discusses model formulation, estimation techniques, and correlation analysis, supported by examples in R.

This comprehensive guide is a useful resource for students, researchers, and practitioners aiming to apply advanced mathematical techniques to tackle complex real-life problems, making it a useful tool for enhancing predictive analytics in business, economics, and finance.

Sergey Svetunkov, PhD in Economics, Doctor of Economic Sciences, Professor at the Peter the Great St. Petersburg Polytechnic University, is the leading expert in the field of mathematical modelling in economics and economic forecasting. He is an author of more than 250 scientific publications. Over the last few decades, he has also acted as an expert of the Russian Science Foundation.

Ivan Svetunkov is a Lecturer of Marketing Analytics at Lancaster University, UK. He has PhD in Management Science from Lancaster University and a candidate degree in economics from Saint Petersburg State University of Economics and Finance. His main area of interest is statistical learning for forecasting, focusing on demand forecasting in healthcare, supply chains and retail. He is a creator and a maintainer of several forecasting- and analytics-related R packages and an author of many papers and a monograph "Forecasting and Analytics with the Augmented Dynamic Adaptive Model".

Chapter 1. Introduction to theory of complex variables.- Chapter 2. Simple Complex Linear Regression.- Chapter 3. Correlation analysis of complex random variables.- Chapter 4. Multiple Complex Linear Regression.- Chapter 5. Assumptions of Complex Linear Models.- Chapter 6. Complex Dynamic Models.- Chapter 7. Examples of application.

Erscheinungsdatum
Reihe/Serie Contributions to Economics
Zusatzinfo XI, 154 p. 63 illus., 43 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Themenwelt Wirtschaft Volkswirtschaftslehre
Schlagworte autoregression • Complex-valued autoregressions • Complex-valued economics • Complex variable functions • Complex variation • Correlogram • Forecasting • Mathematical methods and models in economics • Mathematical statistics of a complex random variable • Modeling of stochastic processes • Short term forecasting • Stochastic reversible processes • TCVF • Vector autoregressions
ISBN-10 3-031-62607-9 / 3031626079
ISBN-13 978-3-031-62607-4 / 9783031626074
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
eine Einführung in die Theorie der Güter-, Arbeits- und Finanzmärkte

von Lutz Arnold

Buch | Softcover (2024)
Mohr Siebeck (Verlag)
39,00