Machine Learning-based Prediction of Missing Parts for Assembly

Buch | Softcover
XXII, 155 Seiten
2024
Springer Fachmedien Wiesbaden GmbH (Verlag)
978-3-658-45032-8 (ISBN)

Lese- und Medienproben

Machine Learning-based Prediction of Missing Parts for Assembly - Fabian Steinberg
106,99 inkl. MwSt

Manufacturing companies face challenges in managing increasing process complexity while meeting demands for on-time delivery, particularly evident during critical processes like assembly. The early identification of potential missing parts at the beginning assembly emerges as a crucial strategy to uphold delivery commitments. This book embarks on developing machine learning-based prediction models to tackle this challenge. Through a systemic literature review, deficiencies in current predictive methodologies are highlighted, notably the underutilization of material data and a late prediction capability within the procurement process. Through case studies within the machine industry a significant influence of material data on the quality of models predicting missing parts from in-house production was verified. Further, a model for predicting delivery delays in the purchasing process was implemented, which makes it possible to predict potential missing parts from suppliers at the time of ordering. These advancements serve as indispensable tools for production planners and procurement professionals, empowering them to proactively address material availability challenges for assembly operations.

Fabian Steinberg studied production technology at the Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen with a Master's degree. In his subsequent doctorate at the Chair of International Production Engineering and Management (IPEM) at the University of Siegen, he focussed on the prediction of missing parts for assembly using artificial intelligence.

Introduction.- Theoretical Background for the Prediction of Missing Parts for Assembly.- Publication I: Approaches for the Prediction of Lead Times in an Engineer to Order Environment - a Systematic Review.- Publication II: Impact of Material Data in Assembly Delay Prediction - a Machine Learning-based Case Study in Machinery Industry.- Publication III: Machine Learning-based Prediction of Missing Components for Assembly - a Case Study at an Engineer-to-order Manufacturer.- Publication IV: Predicting Supplier Delays Utilizing Machine Learning - a Case Study in German Manufacturing Industry.- Critical Refection and Future Perspective.- Summary.- References.

Erscheinungsdatum
Reihe/Serie Findings from Production Management Research
Zusatzinfo XXII, 155 p. 47 illus. Textbook for German language market.
Verlagsort Wiesbaden
Sprache englisch
Maße 148 x 210 mm
Themenwelt Mathematik / Informatik Informatik Datenbanken
Technik
Wirtschaft Betriebswirtschaft / Management Unternehmensführung / Management
Schlagworte Assembly • lead time • machine learning • prediction methods • Production planning and control • supervised learning
ISBN-10 3-658-45032-0 / 3658450320
ISBN-13 978-3-658-45032-8 / 9783658450328
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Der Grundkurs für Ausbildung und Praxis

von Ralf Adams

Buch (2023)
Carl Hanser (Verlag)
29,99
Modern data warehouse, data fabric, data lakehouse und data mesh …

von James Serra

Buch | Softcover (2024)
O'Reilly (Verlag)
39,90