Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches (eBook)

eBook Download: PDF
2022 | 1st ed. 2022
VII, 123 Seiten
Springer International Publishing (Verlag)
978-3-031-12402-0 (ISBN)

Lese- und Medienproben

Interpretability for Industry 4.0 : Statistical and Machine Learning Approaches -
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This volume provides readers with a compact, stimulating and multifaceted introduction to interpretability, a key issue for developing insightful statistical and machine learning approaches as well as for communicating modelling results in business and industry.

Different views in the context of Industry 4.0 are offered in connection with the concepts of explainability of machine learning tools, generalizability of model outputs and sensitivity analysis. Moreover, the book explores the integration of Artificial Intelligence and robust analysis of variance for big data mining and monitoring in Additive Manufacturing, and sheds new light on interpretability via random forests and flexible generalized additive models together with related software resources and real-world examples.



Antonio Lepore is an Associate Professor of Statistics for Experimental and Technological Research (SECS-S/02) in the Department of Industrial Engineering of the University of Naples Federico II.

His research interests and publications in international journals focus on the use of statistical methods for the analysis and monitoring of functional data aimed at the interpretation of complex data coming from high-frequency multi-sensor data acquisition systems.

He is a member of the ENBIS (European Network for Business and Industrial Statistics) and SIS (the Italian Statistical Society).


Biagio Palumbo is an Associate Professor of Statistics for Experimental and Technological Research (SECS-S/02) in the Department of Industrial Engineering of the University of Naples Federico II and President Elect of the European Network for Business and Industrial Statistics (ENBIS).

His research interests are in interpretable statistical learning techniques for industrial engineering and, in particular, for the monitoring of complex data coming from high-frequency multi-sensor acquisition systems and for optimization of manufacturing processes.

He is member of the Italian Statistical Society, the American Society for Quality (ASQ), and the Italian Association of Mechanical Technology.


Jean-Michel Poggi is a Professor of Statistics at Université Paris Cité and a member of the Lab. Maths Orsay (LMO) at Université Paris-Saclay, in France.

His research interests are in nonparametric time series, wavelets, tree-based methods (CART, Random Forests, Boosting) and applied statistics. His work combines theoretical and practical contributions with industrial applications (mainly environment and energy) and software development.

He is Associate Editor of three journals: the Journal of Statistical Software (JSS), Advances in Data Analysis and Classification (ADAC) and the Journal of Data Science, Statistics, and Visualisation (JDSSV).

He is President of the European Network for Business and Industrial Statistics (ENBIS).

 

Erscheint lt. Verlag 19.10.2022
Zusatzinfo VII, 123 p. 45 illus., 32 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Wirtschaft
Schlagworte Additive Manufacturing Systems • generalized additive models • Interpretability • machine learning • Sensitivity
ISBN-10 3-031-12402-2 / 3031124022
ISBN-13 978-3-031-12402-0 / 9783031124020
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich