Synthetic Data for Deep Learning (eBook)

eBook Download: PDF
2021 | 1st ed. 2021
XII, 348 Seiten
Springer International Publishing (Verlag)
978-3-030-75178-4 (ISBN)

Lese- und Medienproben

Synthetic Data for Deep Learning - Sergey I. Nikolenko
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This is the first book on synthetic data for deep learning, and its breadth of coverage may render this book as the default reference on synthetic data for years to come. The book can also serve as an introduction to several other important subfields of machine learning that are seldom touched upon in other books. Machine learning as a discipline would not be possible without the inner workings of optimization at hand. The book includes the necessary sinews of optimization though the crux of the discussion centers on the increasingly popular tool for training deep learning models, namely synthetic data. It is expected that the field of synthetic data will undergo exponential growth in the near future. This book serves as a comprehensive survey of the field.  

In the simplest case, synthetic data refers to computer-generated graphics used to train computer vision models. There are many more facets of synthetic data to consider. In the section on basic computer vision, the book discusses fundamental computer vision problems, both low-level (e.g., optical flow estimation) and high-level (e.g., object detection and semantic segmentation), synthetic environments and datasets for outdoor and urban scenes (autonomous driving), indoor scenes (indoor navigation), aerial navigation, and simulation environments for robotics. Additionally, it touches upon applications of synthetic data outside computer vision (in neural programming, bioinformatics, NLP, and more). It also surveys the work on improving synthetic data development and alternative ways to produce it such as GANs.

The book introduces and reviews several different approaches to synthetic data in various domains of machine learning, most notably the following fields: domain adaptation for making synthetic data more realistic and/or adapting the models to be trained on synthetic data and differential privacy for generating synthetic data with privacy guarantees. This discussion is accompanied by an introduction into generative adversarial networks (GAN) and an introduction to differential privacy.



Sergey I. Nikolenko is a computer scientist specializing in machine  learning and analysis of algorithms. He is the Head of AI at Synthesis  AI, a San Francisco based company specializing on the generation and use of synthetic data for modern machine learning models, and also serves as the Head of the Artificial Intelligence Lab at the Steklov Mathematical Institute at St. Petersburg, Russia. Dr. Nikolenko's interests include synthetic data in machine learning, deep learning models for natural language processing, image manipulation, and computer vision, and algorithms for networking. His previous research includes works on cryptography, theoretical computer science, and algebra.

Erscheint lt. Verlag 26.6.2021
Reihe/Serie Springer Optimization and Its Applications
Springer Optimization and Its Applications
Zusatzinfo XII, 348 p. 125 illus., 100 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Grafik / Design
Wirtschaft Betriebswirtschaft / Management Planung / Organisation
Schlagworte computer vision problems • Deep learning • deep learning and optimization • domain transfer • Gans • low-level computer vision • Machine Learning Models • neural networks computer vision • Object detection • Segmentation • synthetic data • synthetic simulated environment
ISBN-10 3-030-75178-3 / 3030751783
ISBN-13 978-3-030-75178-4 / 9783030751784
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 11,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Schritt für Schritt zu Vektorkunst, Illustration und Screendesign

von Anke Goldbach

eBook Download (2023)
Rheinwerk Design (Verlag)
27,93
Das umfassende Handbuch

von Michael Moltenbrey

eBook Download (2024)
Rheinwerk Fotografie (Verlag)
27,93
Das umfassende Handbuch

von Christian Denzler

eBook Download (2023)
Rheinwerk Design (Verlag)
31,43