Bayesian Statistical Methods - Brian J. Reich, Sujit K. Ghosh

Bayesian Statistical Methods

Buch | Softcover
288 Seiten
2021
Chapman & Hall/CRC (Verlag)
978-1-032-09318-5 (ISBN)
49,85 inkl. MwSt
Designed to provide a good balance of theory and computational methods that will appeal to students and practitioners with minimal mathematical and statistical background and no experience in Bayesian statistics to students and practitioners looking for advanced methodologies.
Bayesian Statistical Methods provides data scientists with the foundational and computational tools needed to carry out a Bayesian analysis. This book focuses on Bayesian methods applied routinely in practice including multiple linear regression, mixed effects models and generalized linear models (GLM). The authors include many examples with complete R code and comparisons with analogous frequentist procedures.



In addition to the basic concepts of Bayesian inferential methods, the book covers many general topics:










Advice on selecting prior distributions







Computational methods including Markov chain Monte Carlo (MCMC)







Model-comparison and goodness-of-fit measures, including sensitivity to priors







Frequentist properties of Bayesian methods






Case studies covering advanced topics illustrate the flexibility of the Bayesian approach:










Semiparametric regression







Handling of missing data using predictive distributions







Priors for high-dimensional regression models







Computational techniques for large datasets







Spatial data analysis






The advanced topics are presented with sufficient conceptual depth that the reader will be able to carry out such analysis and argue the relative merits of Bayesian and classical methods. A repository of R code, motivating data sets, and complete data analyses are available on the book’s website.

Brian J. Reich, Associate Professor of Statistics at North Carolina State University, is currently the editor-in-chief of the Journal of Agricultural, Biological, and Environmental Statistics and was awarded the LeRoy & Elva Martin Teaching Award.

Sujit K. Ghosh, Professor of Statistics at North Carolina State University, has over 22 years of research and teaching experience in conducting Bayesian analyses, received the Cavell Brownie mentoring award, and served as the Deputy Director at the Statistical and Applied Mathematical Sciences Institute.

Brian J. Reich, Associate Professor of Statistics at North Carolina State University, is currently the editor-in-chief of the Journal of Agricultural, Biological, and Environmental Statistics and was awarded the LeRoy & Elva Martin Teaching Award. Sujit K. Ghosh, Professor of Statistics at North Carolina State University, has over 22 years of research and teaching experience in conducting Bayesian analyses, received the Cavell Brownie mentoring award, and served as the Deputy Director at the Statistical and Applied Mathematical Sciences Institute

1. Introduction to Bayesian Inferential Framework. 2. Prior Knowledge to Posterior Inference. 3. Computational Methods. 4. Linear and Generalized Linear Regression Methods. 5. Models for Large Dimensional Parameters. 6. Models for Dependent Data. 7. Models for Data with Irregularities. 8. Models for Infinite Dimensional Parameters. 9. Advanced Computational Methods. 10. Case Studies Using Advanced Bayesian Methods



The code and data is at https://bayessm.wordpress.ncsu.edu/.

Erscheinungsdatum
Reihe/Serie Chapman & Hall/CRC Texts in Statistical Science
Sprache englisch
Maße 156 x 234 mm
Gewicht 394 g
Themenwelt Mathematik / Informatik Mathematik Statistik
Wirtschaft Volkswirtschaftslehre Ökonometrie
ISBN-10 1-032-09318-8 / 1032093188
ISBN-13 978-1-032-09318-5 / 9781032093185
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Der Weg zur Datenanalyse

von Ludwig Fahrmeir; Christian Heumann; Rita Künstler …

Buch | Softcover (2024)
Springer Spektrum (Verlag)
49,99
Eine Einführung für Wirtschafts- und Sozialwissenschaftler

von Günter Bamberg; Franz Baur; Michael Krapp

Buch | Softcover (2022)
De Gruyter Oldenbourg (Verlag)
29,95