A Derivative-free Two Level Random Search Method for Unconstrained Optimization (eBook)

(Autor)

eBook Download: PDF
2021 | 1st ed. 2021
XI, 118 Seiten
Springer International Publishing (Verlag)
978-3-030-68517-1 (ISBN)

Lese- und Medienproben

A Derivative-free Two Level Random Search Method for Unconstrained Optimization - Neculai Andrei
Systemvoraussetzungen
64,19 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The book is intended for graduate students and researchers in mathematics, computer science, and operational research. The book presents a new derivative-free optimization method/algorithm based on randomly generated trial points in specified domains and where the best ones are selected at each iteration by using a number of rules. This method is different from many other well established methods presented in the literature and proves to be competitive for solving many unconstrained optimization problems with different structures and complexities, with a relative large number of variables. Intensive numerical experiments with 140 unconstrained optimization problems, with up to 500 variables, have shown that this approach is efficient and robust.

Structured into 4 chapters, Chapter 1 is introductory. Chapter 2 is dedicated to presenting a two level derivative-free random search method for unconstrained optimization. It is assumed that the minimizing function is continuous, lower bounded and its minimum value is known. Chapter 3 proves the convergence of the algorithm. In Chapter 4, the numerical performances of the algorithm are shown for solving 140 unconstrained optimization problems, out of which 16 are real applications. This shows that the optimization process has two phases: the reduction phase and the stalling one. Finally, the performances of the algorithm for solving a number of 30 large-scale unconstrained optimization problems up to 500 variables are presented. These numerical results show that this approach based on the two level random search method for unconstrained optimization is able to solve a large diversity of problems with different structures and complexities.

There are a number of open problems which refer to the following aspects: the selection of the number of trial or the number of the local trial points, the selection of the bounds of the domains where the trial points and the local trial points are randomly generated and a criterion for initiating the line search.



Neculai Andrei holds a position at the Center for Advanced Modeling and Optimization at the Academy of Romanian Scientists in Bucharest, Romania. Dr. Andrei's areas of interest include mathematical modeling, linear programming, nonlinear optimization, high performance computing, and numerical methods in mathematical programming. In addition to this present volume, Neculai Andrei has published several books with Springer including Nonlinear Conjugate Gradient Methods for Unconstrained Optimization (2020), Continuous Nonlinear Optimization for Engineering Applications in GAMS Technology (2017), and Nonlinear Optimization Applications Using the GAMS Technology (2013).
Erscheint lt. Verlag 31.3.2021
Reihe/Serie SpringerBriefs in Optimization
SpringerBriefs in Optimization
Zusatzinfo XI, 118 p. 14 illus., 13 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik
Wirtschaft Betriebswirtschaft / Management Planung / Organisation
Schlagworte deeps • derivative methods • modified Wolfe function • Nelder-Mead algorithm • NELMED • nfunc • random search method • trial points • Unconstrained optimization • VARDIM
ISBN-10 3-030-68517-9 / 3030685179
ISBN-13 978-3-030-68517-1 / 9783030685171
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Ein Lehr- und Managementbuch

von Dietmar Vahs

eBook Download (2023)
Schäffer-Poeschel Verlag
44,99
Ein Lehr- und Managementbuch

von Dietmar Vahs

eBook Download (2023)
Schäffer-Poeschel Verlag
44,99