Linear Models with Correlated Disturbances - Paul Knottnerus

Linear Models with Correlated Disturbances

(Autor)

Buch | Softcover
VIII, 196 Seiten
1991 | 1. Softcover reprint of the original 1st ed. 1991
Springer Berlin (Verlag)
978-3-540-53901-8 (ISBN)
106,99 inkl. MwSt
In each chapter of this volume some specific topics in the econometric analysis of time series data are studied. All topics have in common the statistical inference in linear models with correlated disturbances. The main aim of the study is to give a survey of new and old estimation techniques for regression models with disturbances that follow an autoregressive-moving average process. In the final chapter also several test strategies for discriminating between various types of autocorrelation are discussed. In nearly all chapters it is demonstrated how useful the simple geometric interpretation of the well-known ordinary least squares (OLS) method is. By applying these geometric concepts to linear spaces spanned by scalar stochastic variables, it emerges that well-known as well as new results can be derived in a simple geometric manner, sometimes without the limiting restrictions of the usual derivations, e. g. , the conditional normal distribution, the Kalman filter equations and the Cramer-Rao inequality. The outline of the book is as follows. In Chapter 2 attention is paid to a generalization of the well-known first order autocorrelation transformation of a linear regression model with disturbances that follow a first order Markov scheme. Firstly, the appropriate lower triangular transformation matrix is derived for the case that the disturbances follow a moving average process of order q (MA(q". It turns out that the calculations can be carried out either analytically or in a recursive manner.

I Introduction.- II Transformation Matrices and Maximum Likelihood Estimation of Regression Models with Correlated Disturbances.- 2.1 Introduction.- 2.2 The algebraic problem.- 2.3 A dual problem.- 2.4 Recursive methods for calculating the transformation matrix P.- 2.5 The matrix P in the case of MA(1) disturbances.- 2.6 The matrix P in the case of MA(q) disturbances.- 2.7 The matrix P in the case of ARMA(p,q) disturbances.- Appendix 2. A Linear vector spaces.- Appendix 2.B The formula for ßtj if t is small.- III Computational Aspects of data Transformations and Ansley's Algorithm.- 3.1 Introduction.- 3.2 Recursive computations for models with MA(q) disturbances.- 3.3 Recursive computations for models with ARMA(p,q) disturbances.- 3.4 Ansley's method.- IV GLS Estimation by Kalman Filtering.- 4.1 Introduction.- 4.2 Some results from multivariate analysis.- 4.3 The Kaiman filter equations.- 4.4 The likelihood function.- 4.5 Estimation of linear models with ARMA(p,q) disturbances by means of Kaiman filtering.- 4.6 The exact likelihood function for models with ARMA(p,q) disturbances.- 4.7 Predictions and prediction intervals by using Kaiman filtering.- V Estimation of Regression Models with Missing Observations and Serially Correlated Disturbances.- 5.1 Introduction.- 5.2 The model.- 5.3 Derivation of the transformation matrix.- 5.4 Estimation and test procedures.- 5.5 Kaiman filtering with missing observations.- Appendix 5.A Stationarity conditions for an AR(2) process.- VI Distributed lag Models and Correlated Disturbances.- 6.1 Introduction.- 6.2 The geometric distributed lag model.- 6.3 Estimation methods.- 6.4 A simple formula for Koyck's consistent two-step estimator.- 6.5 Efficient estimation of dynamic models.- 6.6 Dynamic models with several geometricdistributed lags.- 6.7 The Cramér-Rao inequality and the Pythagorean theorem.- VII Test Strategies for Discriminating Between Autocorrelation and Misspecification.- 7.1 Introduction.- 7.2 Thursby's test strategy.- 7.3 Comments on Thursby's test strategy.- 7.4 Godfrey's test strategy.- 7.5 Comments on Godfrey's test strategy.- References.- Author Index.

Erscheint lt. Verlag 7.5.1991
Reihe/Serie Lecture Notes in Economics and Mathematical Systems
Zusatzinfo VIII, 196 p. 1 illus.
Verlagsort Berlin
Sprache englisch
Maße 170 x 244 mm
Gewicht 374 g
Themenwelt Wirtschaft Betriebswirtschaft / Management Logistik / Produktion
Wirtschaft Volkswirtschaftslehre Ökonometrie
Schlagworte Correlation • Covariance matrix • Estimator • Kalman-Filter • korrelierte Störungen • likelihood • Regression • Time Series
ISBN-10 3-540-53901-8 / 3540539018
ISBN-13 978-3-540-53901-8 / 9783540539018
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen - Spezialthemen - Übungen

von Hans Arnolds; Franz Heege; Carsten Röh; Werner Tussing

Buch | Softcover (2022)
Springer Gabler (Verlag)
39,99

von Wolfgang Stölzle; Dustin Schöder; Ludwig Häberle

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
39,95
dynamisch und innovativ

von Ingrid Göpfert

Buch | Softcover (2024)
Vahlen (Verlag)
34,90