Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium Batteries (eBook)

eBook Download: PDF
2019 | 1st ed. 2019
XVII, 230 Seiten
Springer International Publishing (Verlag)
978-3-030-28943-0 (ISBN)

Lese- und Medienproben

Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium Batteries - Snehashis Choudhury
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This thesis makes significant advances in the design of electrolytes and interfaces in electrochemical cells that utilize reactive metals as anodes. Such cells are of contemporary interest because they offer substantially higher charge storage capacity than state-of-the-art lithium-ion battery technology. Batteries based on metallic anodes are currently considered impractical and unsafe because recharge of the anode causes physical and chemical instabilities that produce dendritic deposition of the metal leading to catastrophic failure via thermal runaway. This thesis utilizes a combination of chemical synthesis, physical & electrochemical analysis, and materials theory to investigate structure, ion transport properties, and electrochemical behaviors of hybrid electrolytes and interfacial phases designed to prevent such instabilities. In particular, it demonstrates that relatively low-modulus electrolytes composed of cross-linked networks of polymer-grafted nanoparticles stabilize electrodeposition of reactive metals by multiple processes, including screening electrode electrolyte interactions at electrochemical interfaces and by regulating ion transport in tortuous nanopores. This discovery is significant because it overturns a longstanding perception in the field of nanoparticle-polymer hybrid electrolytes that only solid electrolytes with mechanical modulus higher than that of the metal electrode are able to stabilize electrodeposition of reactive metals.




Snehashis Choudhury is a postdoctoral researcher in the Department of Chemical Engineering at Stanford University. He received his PhD from Cornell University in 2018.

Supervisor’s Foreword 8
Acknowledgments 10
Contents 12
Parts of this thesis have been published in the following journal articles: 16
Chapter 1: Introduction 17
1.1 The Lithium Metal Battery 17
1.2 Design Principles 18
1.2.1 Nanostructured Electrolytes 19
1.2.2 Solid-Liquid Interphases 21
1.3 Outline 24
References 25
Chapter 2: Hybrid Hairy Nanoparticle Electrolytes Stabilize Lithium Metal Batteries 28
2.1 Introduction 28
2.2 Materials and Methods 30
2.2.1 Synthesis 30
2.2.2 Characterization 30
2.2.3 Electrochemical Measurements 31
2.2.4 Analyzing the Coulombic Efficiency 32
2.2.5 Cell Lifetime Study 32
2.3 Results and Discussion 32
2.3.1 Physical Characterization and Ion Transport 32
2.3.2 Structural Factor Analysis 34
2.3.3 Variation of Interfacial Resistance 36
2.3.4 Surface Characterization of Li Anode 38
2.3.5 Enhanced Electrochemical Stability of Nanocomposites 39
2.3.6 Analyzing Galvanostatic Performance 41
2.4 Conclusion 42
Appendix: Supplementary Information 43
References 45
Chapter 3: A Highly Reversible Room-Temperature Lithium Metal Battery Based on Cross-Linked Hairy Nanoparticles 49
3.1 Introduction 49
3.2 Methods 50
3.2.1 Materials 50
3.2.2 Nanoparticle-Polymer Cross-Link Synthesis and Composite Electrolyte Preparation 51
3.2.3 TEM and Small Angle X-Ray Scattering 51
3.2.4 Mechanical Properties 51
3.2.5 Electrochemical Characterization 52
3.2.6 Cell Lifetime and Failure Studies 52
3.2.7 Measuring the Coulombic Efficiency 52
3.2.8 Half-Cell Testing 53
3.3 Results 53
3.3.1 Synthesis and Physical Characterization of Cross-Linked Membrane 53
3.3.2 Mechanical and Electrochemical Properties of Cross-Linked Membrane 56
3.3.3 Analyzing Stability of Lithium Electrodeposition Using Cross-Linked Membranes 58
3.4 Discussion 62
Appendix: Supplementary Information 63
Supplementary Figures 63
Supplementary Tables 68
Supplementary Methods 68
Supplementary Reference 69
References 69
Chapter 4: Confining Electrodeposition of Metals in Structured Electrolytes 72
4.1 Significance 72
4.2 Introduction 72
4.3 Materials and Methods 74
4.3.1 Materials 74
4.3.2 Linear Stability Analysis 74
4.3.3 Cross-Linked Hairy Nanoparticles Synthesis 74
4.3.4 Dielectric Spectroscopy 74
4.3.5 Transmission Electron Microscopy 75
4.3.6 Scanning Electron Microscopy 75
4.3.7 Mechanical Properties 75
4.3.8 Direct Visualization Experiments 75
4.4 Results 76
4.5 Conclusion 83
Appendix: Supplementary Information 84
References 90
Chapter 5: Lithium Fluoride Additives for Stable Cycling of Lithium Batteries at High Current Densities 93
5.1 Introduction 93
5.2 Experimental Section 95
5.2.1 Materials 95
5.2.2 Methods 95
5.2.3 Electrochemical Characterization 95
5.3 Results 96
5.4 Conclusion 102
Appendix: Supplementary Information 103
References 105
Chapter 6: Designing Solid-Liquid Interphases for Sodium Batteries 107
6.1 Introduction 107
6.2 Methods 109
6.2.1 Materials 109
6.2.2 Sodium Bromide and Other Halide Coating Formation 109
6.2.3 Physical Characterization 109
6.2.4 Electrochemical Characterization 110
6.2.5 Scanning Electron Microscopy 110
6.2.6 Focused Ion Beam/Scanning Electron Microscopy 111
6.2.7 In Situ Visualization Studies 111
6.2.8 Cell Lifetime and Failure Studies 111
6.2.9 Sulfur-PAN Cathode Cycling 112
6.3 Results 112
6.3.1 Joint Density-Functional Theory (JDFT) Study of SEI 112
6.3.2 Formulation and Stability of a NaBr-Based SEI Layer on Sodium Metal 114
6.3.3 Electrodeposition of Sodium Metal with NaBr-Coated Anode 119
6.4 Discussion 122
Appendix: Supplementary Information 123
References 126
Chapter 7: Electroless Formation of Hybrid Lithium Anodes for High Interfacial Ion Transport 129
7.1 Introduction 129
7.2 Results 130
7.3 Conclusion 139
Appendix: Supplementary Information 140
Methods 142
Computational Details 142
Experimental Details 143
Materials 143
Scanning Electron Microscopy and EDX 143
X-Ray Diffraction 143
X-Ray Photoelectron Spectroscopy 143
Impedance Spectroscopy 144
Cyclic Voltammetry 144
Direct Visualization Experiments 144
Battery Performance 144
References 145
Chapter 8: Designer Interphases for the Lithium-Oxygen Electrochemical Cell 148
8.1 Introduction 148
8.2 Results and Discussion 150
8.2.1 Understanding the Anode Protection Mechanism 150
Characterization of the Anode 150
Lithium-Electrolyte Stability 154
Anode Protection Mechanism 157
8.2.2 Understanding the Cathode Stabilization Mechanism 157
Characterizing Cathode Products 157
Cycling Performance 159
Cathode Stabilization Mechanism 161
8.3 Conclusions 162
Appendix: Supplementary Information 163
Experimental 167
Li-O2 Battery Methods and Materials 167
Cathode Preparation 167
Electrolyte Preparation 167
Coin Cell Assembly 168
Testing Environment 168
Cyclic Voltammetry 168
Anode Stability Methods and Materials 168
Impedance Spectroscopy 168
Linear Scan Voltammetry 168
Lithium Versus Stainless Steel Cycling 169
Characterization Techniques 169
Scanning Electron Microscopy and EDAX 169
X-Ray Diffraction 169
X-Ray Photoelectron Spectroscopy 169
References 170
Chapter 9: Soft Colloidal Glasses as Solid-State Electrolytes 173
9.1 Introduction 173
9.2 Results and Discussion 175
9.2.1 Synthesis and Chemical Analysis 175
9.2.2 Calorimetry and Ion Transport 176
9.2.3 Structure Analysis and Rheology 178
9.2.4 Analysis of Electrochemical Performance 181
9.3 Conclusion 183
Appendix: Supplementary Information 184
Materials and Methods 188
Synthesis of Self-Suspended Covalently Grafted Hairy Nanoparticles 188
Characterization 188
Electrochemical Measurements 188
Small-Angle X-Ray Scattering Measurements 189
Rheology Measurements 189
References 190
Chapter 10: Solid Polymer Interphases for Lithium Metal Batteries 193
10.1 Introduction 193
10.2 Results and Discussion 194
10.3 Methods 202
10.3.1 Fabrication of Cross-Linked Polymer Network and Coated Lithium 202
10.3.2 Material Characterization 202
10.3.3 Electrochemical Characterization 203
Appendix: Supplementary Information 203
References 207
Chapter 11: Stabilizing Polymer Electrolytes in High-Voltage Lithium Batteries 209
11.1 Introduction 209
11.2 Results and Discussions 211
11.3 Methods 222
11.3.1 Computational Details 222
11.3.2 Experimental Details 222
Appendix: Supplementary Information 222
Methods 232
Computational Details 232
Scheme Used to Calculate the Redox Potentials 232
Experimental Details 233
Materials 233
Coating of NCM Electrode with Lithion Solution 233
Synthesis of Gel and Cross-Linked Nanoparticles Electrolyte 233
Dielectric Spectroscopy 234
Scanning Electron Microscopy 234
X-Ray Photoelectron Spectroscopy 234
Floating-Point Experiment 234
Fourier Transform Infrared Spectroscopy 235
Three-Electrode Voltammetry 235
Battery Performance 235
References 235
Biographical Sketch 238

Erscheint lt. Verlag 25.9.2019
Reihe/Serie Springer Theses
Zusatzinfo XVII, 230 p. 116 illus., 99 illus. in color.
Sprache englisch
Themenwelt Technik Maschinenbau
Wirtschaft
Schlagworte Dendrite Growth • dendrite-induced short circuit • electrode-electrolyte interphase • electrodeposition measurement • hairy nanoparticle • Lithium-Ion Battery • multiscale modeling of ion transport • nanoparticle-polymer hybrid electrolyte • soft colloidal glasses
ISBN-10 3-030-28943-5 / 3030289435
ISBN-13 978-3-030-28943-0 / 9783030289430
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 14,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Funktion, Gestaltung und Berechnung

von Karl-Heinz Decker; Karlheinz Kabus

eBook Download (2023)
Carl Hanser Fachbuchverlag
39,99