Cryogenic Safety (eBook)

A Guide to Best Practice in the Lab and Workplace
eBook Download: PDF
2019 | 1st ed. 2019
XIX, 213 Seiten
Springer International Publishing (Verlag)
978-3-030-16508-6 (ISBN)

Lese- und Medienproben

Cryogenic Safety - Thomas J. Peterson, J. G. Weisend II
Systemvoraussetzungen
160,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book describes the current state of the art in cryogenic safety best practice, helping the reader to work with cryogenic systems and materials safely.  It brings together information from previous texts, industrial and laboratory safety polices, and recent research papers. Case studies, example problems, and an extensive list of references are included to add to the utility of the text.

It describes the unique safety hazards posed by cryogenics in all its guises, including issues associated with the extreme cold of cryogenics, the flammability of some cryogenic fluids, the displacement of oxygen by inert gases boiling off from cryogenic fluids, and the high pressures that can be formed during the volume expansion that occurs when a cryogenic fluid becomes a room temperature gas.  A further chapter considers the challenges arising from the behavior of materials at cryogenic temperatures. Many materials are inappropriate for use in cryogenics and can fail, resulting in hazardous conditions.  Despite these hazards, work at cryogenic temperatures can be performed safely.

The book also discusses broader safety issues such as hazard analysis, establishment of a safe work culture and lessons  learned from cryogenic  safety in accelerator labs. This book is designed to be useful to everyone affected by cryogenic hazards regardless of their expertise in cryogenics.




Tom Peterson has over 40 years of experience in large-scale cryogenic engineering for particle accelerators and test facilities.  He holds a BA in mathematics and an MS in Engineering from the University of Wisconsin, Madison.  His experience includes design, commissioning, and operation of large-scale helium cryogenic systems, including serving as project engineer for systems cooling superconductors in superfluid helium.  Peterson's international experience includes 1.5 years at the Deutsches Electronen Synchrotron (DESY) in Hamburg, Germany and collaboration with CERN for Fermilab's contributions to the Large Hadron Collider (LHC).  He joined the SLAC National Accelerator Laboratory in 2016 where his present position is Technical Director for the Linac Coherent Light Source II (LCLS-II) Project at SLAC. 

John Weisend is currently Deputy Head of Accelerator Projects and Group Leader for Specialized Technical Services at The European Spallation Source, Lund, Sweden. He is also an Adjunct professor at Lund University.  He received his Ph.D. in Nuclear Engineering & Engineering Physics from the University of Wisconsin - Madison, where he investigated engineering applications of He II. He has worked at the SSC Laboratory, the Centre D'Etudes Nucleaires Grenoble, the Deutsches Elecktronen-Synchrotron Laboratory (DESY), the Stanford Linear Accelerator Laboratory (SLAC), the National Science Foundation and Michigan State University. 
Dr. Weisend's research interests include He II and large scale accelerator cryogenics. He is the Chairman of the Board of Directors of the Cryogenic Society of America (CSA). He has led the CSA Short Course Program since 2001. 
He is Chief Technical Editor of Advances in Cryogenic Engineering. In addition to co-authoring more than 70 technical papers, Dr. Weisend is the author of He is for Helium, the co-author (with N. Filina) of Cryogenic Two-Phase Flow and the editor of the Handbook of Cryogenic Engineering and of Cryostat Design. He writes a regular column 'Cryo Bios' for the publication Cold Facts and is a member of both the Cryogenic Engineering Conference and International Cryogenic Engineering Conference Boards.

Acknowledgements 6
Introduction 7
References 10
Contents 11
Authors and Contributors 16
1 Properties of Fluids and Materials at Cryogenic Temperatures 19
1.1 Example Accident 19
1.2 Introduction 21
1.3 Cryogenic Fluids 21
1.3.1 Volume Ratios 22
1.3.2 Flammability Hazards 22
1.3.3 Oxygen Hazards 23
1.3.4 Liquid Nitrogen and Ionizing Radiation 23
1.3.5 Cold Hazards 24
1.4 Cryogenic Properties of Materials 24
1.4.1 Appropriate and Inappropriate Materials for Cryogenics 25
1.4.2 Hydrogen Embrittlement 26
1.4.3 Thermal Contraction 26
1.4.4 Strength 28
1.5 Sources of Material Property Data 28
1.5.1 Properties of Cryogenic Fluids 28
1.5.2 Cryogenic Properties of Materials 29
1.5.3 Research on Material Properties 29
1.6 Best Practices 30
References 31
2 General Cryogenic Safety 32
2.1 Example Accident 32
2.2 Introduction 33
2.3 Effects of Cold 33
2.3.1 Mitigation 33
2.4 Personal Protective Equipment 34
2.5 First Aid 35
2.6 Handling of Cryostats and Dewars 36
2.7 Pressurized Systems 37
2.8 Presence of Magnetic Fields 38
2.9 Housekeeping 39
2.10 Job Hazard Analysis, Procedures, Training and Safe Work Culture 39
2.10.1 Job Hazard Analysis 39
2.10.2 Procedures 41
2.10.3 Training 41
2.10.4 Safe Work Culture 41
2.11 Best Practices 42
Appendix 42
References 45
3 Pressure Safety in Cryogenics 46
3.1 Example Accident 46
3.2 Cryogenic Pressure Safety—Introduction and Safety Requirements 47
3.3 Sources of Pressure 49
3.4 Analytical Methods for Vent Line and Relief Sizing 51
3.5 Relief Devices 56
3.6 Examples of Venting System Analyses 59
3.7 Examples of the Impact on Cryogenic Design 62
3.8 More General Cryogenic System Safety Reviews 64
3.9 Conclusions and Best Practices 65
References 66
4 Oxygen Deficiency Hazards 68
4.1 Example Accident 68
4.2 Nature of the Hazard 68
4.3 Basics of ODH Safety 70
4.4 Mitigations 71
4.5 ODH Risk Analysis 74
4.5.1 Scaling Analysis 75
4.5.2 Risk Assessment 76
4.6 Proper Response to ODH Alarms and Events 79
4.7 Helium Vapor Release Studies and Numerical Modeling 80
4.8 Best Practices 81
Appendix 82
References 93
5 Oxygen Safety 94
5.1 Example Accident 95
5.2 History 96
5.2.1 Discovery 96
5.2.2 Production and Distribution 97
5.2.3 Accidents 98
5.3 Properties 99
5.4 Basic Principles for the Safe Use of Oxygen 100
5.4.1 Liquid Oxygen Safety 100
5.4.2 Gaseous Oxygen Safety 102
5.5 Oxygen Enrichment—What Happens if There is Too Much Oxygen? 102
5.5.1 Causes 102
5.6 Oxygen Deficiency—What Happens if There is Too Little Oxygen? 103
5.6.1 Causes 103
5.6.2 Hazards 104
5.7 Personnel Safety and Health 104
5.7.1 Review/Maintenance 105
5.7.2 Certification 106
5.7.3 Emergency Response 106
5.7.4 Buddy System 107
5.8 System Design 107
5.8.1 Overall Guidelines 107
5.8.2 Reviews 110
5.8.3 Typical Review Stages 110
5.9 Design of Gaseous Oxygen (GOX) Systems 110
5.10 Design of Liquid Oxygen (LOX) Systems 113
5.11 Material Compatibility 116
5.12 Construction/Fabrication/Operations 118
5.12.1 Facility Planning 118
5.12.2 Manufacturing, Installation and Operations 119
5.13 Cleaning 121
5.14 Oxygen Hazards Examples (Informative) 126
5.14.1 Example 1—Suitability of G10 for Instrumentation Support in a LOX Cryostat 126
5.14.2 Example 2—Oxygen Enrichment Due to Un-insulated Cryogenic Piping 129
5.15 Best Practices 132
5.16 Standards and References 133
5.16.1 General 133
5.16.2 Testing 134
5.16.3 Safety 134
5.16.4 Cleaning 134
References 135
6 Hydrogen Safety 136
6.1 Example Accident 136
6.2 Acronyms, Terminology and Definitions 139
6.3 Introduction 139
6.4 Primary Safety Issues with the Use of Hydrogen 140
6.5 The Challenge to Working with Hydrogen 141
6.5.1 Physical Behaviors 142
6.5.2 Combustion 146
6.5.3 Hazards of Pressurized Systems 149
6.5.4 Materials Considerations 150
6.5.5 Health Hazards in Hydrogen Operations 154
6.5.6 Engineering Management 156
6.6 Addressing Hydrogen Hazards 157
6.6.1 The Notion of a “Control Volume” 158
6.6.2 Basic Handling Considerations 159
6.6.3 Principles for Addressing Hazards 164
6.6.4 Components 165
6.7 System Considerations 172
6.7.1 System Considerations 172
6.7.2 Operations 178
6.7.3 Hazard Assessment 181
6.8 Facilities 183
6.8.1 Safety of Facilities with Hydrogen Systems 183
6.8.2 General Facility Guidelines 184
6.8.3 Protection of Hydrogen Systems 189
6.9 Safety Checklist 191
6.10 Summary and Best Practices 195
References 196
7 Liquefied Natural Gas (LNG) Safety 197
7.1 Example Accident 197
7.2 Introduction 197
7.3 Properties of LNG 198
7.4 LNG Hazards and Mitigations 199
7.4.1 Hazards Common with Other Cryogenic Fluids 199
7.4.2 Flammability 199
7.4.3 Rollover 200
7.4.4 Stratification 202
7.4.5 Mitigations 202
7.4.6 Rapid Phase Transition 202
7.5 Existing Codes, Standards and Publications 204
7.6 Best Practices 204
References 205
8 Approaches to Cryogenic Safety in Particle Accelerator Labs 206
8.1 Introduction and Challenges 206
8.2 Written Policies 208
8.3 Hazard Analysis 209
8.3.1 Failure Mode and Effects Analysis (FMEA) 209
8.3.2 What-If-Analysis 211
8.4 Reviews 211
8.5 Lessons Learned and Near Misses 214
8.6 Best Practices 215
References 216
9 Summary and General Cryogenic Safety Guidelines 217
9.1 Summary 217
Appendix: Additional Resources for Cryogenic Safety 220
Index 223

Erscheint lt. Verlag 26.4.2019
Reihe/Serie International Cryogenics Monograph Series
International Cryogenics Monograph Series
Co-Autor John Jurns, Stephen Woods
Zusatzinfo XIX, 213 p. 69 illus., 49 illus. in color.
Sprache englisch
Themenwelt Naturwissenschaften Chemie
Naturwissenschaften Physik / Astronomie Allgemeines / Lexika
Naturwissenschaften Physik / Astronomie Theoretische Physik
Wirtschaft Betriebswirtschaft / Management
Schlagworte Cryogenic Equipment • cryogenic fluids • Cryogenic Hazards • Cryogenic Instrumentation • Cryogenic materials • Cryogenics Accidents • Cryogenic Safety Equipment • Cryogenic Safety in Medical Physics • Cryogenic Safety Policy • Cryogenics Best Practice • Cryogenics Guidelines • Cryogenics Laboratories • Cryogenics Regulations • Cryogenics Safety • Handling of Cryogenic Fluids • Handling of Cryogenic Liquids • He II Safety • LH2 Safety • Physiological Hazards of Cryogenics • Safety at Low Temperatures
ISBN-10 3-030-16508-6 / 3030165086
ISBN-13 978-3-030-16508-6 / 9783030165086
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
für Studierende der Natur- und Ingenieurwissenschaften

von Heribert Stroppe; Peter Streitenberger; Eckard Specht

eBook Download (2023)
Carl Hanser Verlag GmbH & Co. KG
39,99