PyTorch Recipes (eBook)
XX, 184 Seiten
Apress (Verlag)
978-1-4842-4258-2 (ISBN)
- Master tensor operations for dynamic graph-based calculations using PyTorch
- Create PyTorch transformations and graph computations for neural networks
- Carry out supervised and unsupervised learning using PyTorch
- Work with deep learning algorithms such as CNN and RNN
- Build LSTM models in PyTorch
- Use PyTorch for text processing
Get up to speed with the deep learning concepts of Pytorch using a problem-solution approach. Starting with an introduction to PyTorch, you'll get familiarized with tensors, a type of data structure used to calculate arithmetic operations and also learn how they operate. You will then take a look at probability distributions using PyTorch and get acquainted with its concepts. Further you will dive into transformations and graph computations with PyTorch. Along the way you will take a look at common issues faced with neural network implementation and tensor differentiation, and get the best solutions for them. Moving on to algorithms; you will learn how PyTorch works with supervised and unsupervised algorithms. You will see how convolutional neural networks, deep neural networks, and recurrent neural networks work using PyTorch. In conclusion you will get acquainted with natural language processing and text processing using PyTorch.What You Will LearnMaster tensor operations for dynamic graph-based calculations using PyTorchCreate PyTorch transformations and graph computations for neural networksCarry out supervised and unsupervised learning using PyTorch Work with deep learning algorithms such as CNN and RNNBuild LSTM models in PyTorch Use PyTorch for text processing Who This Book Is ForReaders wanting to dive straight into programming PyTorch.
Pradeepta Mishra is a data scientist and artificial intelligence researcher by profession, currently head of NLP, ML, and AI at Lymbyc, has expertise in designing artificial intelligence systems for performing tasks such as understanding natural language and giving recommendations based on natural language processing. He has filed two patents as an inventor, has written two books: R Data Mining Blueprints and R: Mining Spatial, Text, Web, and Social Media Data. There are two courses available on Udemy from his books. He has delivered a talk at the Global Data Science conference 2018, at Santa Clara, CA, USA on applications of bi-directional LSTM for time series forecasting. One of his books has been a recommended text at the HSLS Center, University of Pittsburgh, PA, USA. He has delivered a TEDx talk on ‘Can Machines Think?’, a session on the power of artificial intelligence in transforming different industries and changing job roles across industries. He has delivered 50+ tech talks on data science, machine learning, and artificial intelligence in various meet-ups, technical institutions, universities, and community arranged forums.
Chapter 1: Introduction PyTorch, Tensors, Tensor Operations and Basics.-
Chapter 2: Probability distributions using PyTorch.-
Chapter 3: Convolutional Neural Network and RNN using PyTorch.-
Chapter 4: Introduction to Neural Networks, Tensor Differentiation .-
Chapter 5: Supervised Learning using PyTorch.-
Chapter 6: Fine Tuning Deep Learning Algorithms using PyTorch.-
Chapter 7: NLP and Text Processing using PyTorch.-
Erscheint lt. Verlag | 28.1.2019 |
---|---|
Zusatzinfo | XX, 184 p. 280 illus. |
Verlagsort | Berkeley |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge | |
Mathematik / Informatik ► Mathematik ► Finanz- / Wirtschaftsmathematik | |
Wirtschaft | |
Schlagworte | CNN • deeplearning • deepqlearning • Neural • NLP • Probabilistic • PyTorch • Recipes • RNN |
ISBN-10 | 1-4842-4258-0 / 1484242580 |
ISBN-13 | 978-1-4842-4258-2 / 9781484242582 |
Haben Sie eine Frage zum Produkt? |
Größe: 15,4 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich