Multimodal Polymers with Supported Catalysts (eBook)

Design and Production
eBook Download: PDF
2019 | 1st ed. 2019
IX, 276 Seiten
Springer International Publishing (Verlag)
978-3-030-03476-4 (ISBN)

Lese- und Medienproben

Multimodal Polymers with Supported Catalysts -
Systemvoraussetzungen
160,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book provides an overview of polyolefine production, including several recent breakthrough innovations in the fields of catalysis, process technology, and materials design. The industrial development of polymers is an extraordinary example of multidisciplinary cooperation, involving experts from different fields.  An understanding of structure-property and processing relationships leads to the design of materials with innovative performance profiles. A comprehensive description of the connection between innovative material performance and multimodal polymer design, which incorporates both flexibility and constraints of multimodal processes and catalyst needs, is provided. This book provides a summary of the polymerization process, from the atomistic level to the macroscale, process components, including catalysts, and their influence on final polymer performance. This reference merges academic research and industrial knowledge to fill the gaps between academic research and industrial processes. 

·         Connects innovative material performance to the flexibility of multimodal polymer design processes;

·         Provides a comprehensive description of the polymerization process from the atomic level to the macroscale;

·         Presents a polyhedric view of multimodal polymer production, including structure, property, and processing relationships, and the development of new materials.



Dusan Jeremic is a Senior Group Expert  and Alexandra Albunia and Floran Prades are Senior Scientists at Borealis Polyolefine GmbH.

Dusan Jeremic is a Senior Group Expert  and Alexandra Albunia and Floran Prades are Senior Scientists at Borealis Polyolefine GmbH.

Overview of Polyolefins - Role of Polyolefins in Our Daily Lives 5
Contents 9
Chapter 1: Recent Developments in Supported Polyolefin Catalysts: A Review 10
1.1 Overview 10
1.1.1 Scope of the Chapter 11
1.2 Ziegler Catalysts 12
1.2.1 Ziegler/Natta Polypropylene Catalysis 12
TiCl3 Catalysts (First and Second Generation) 12
Third Generation: ``Activated´´ MgCl2 13
Fourth Generation: Phthalate ID/Alkoxysilane ED 13
Fifth-Generation Catalysts: Diethers, Succinates, and Polyol Esters 14
Sixth-Generation Ziegler: Phthalate Replacement 16
Catalyst Morphology Control 17
External Donors 23
1.2.2 Ziegler Catalysts: Polyethylene 27
MgCl2-Titanium Catalysts on Silica 27
Spray-Dried MgCl2-Titanium Catalysts 28
MgCl2-Titanium Catalysts Based on Mg(OR)2 30
MgCl2-Titanium Catalysts Based on MgCl2 alcohol adducts 32
MgCl2-Titanium Catalysts Based on MgRCl 34
1.3 Supported Molecular Catalysts 35
1.3.1 Polypropylene Complex Development 35
1.3.2 Polyethylene Complex Development 36
1.3.3 Supported Activator Development 40
Silica-Supported Methylaluminoxane or Boron-Based Cocatalysts 40
Supported Methylaluminoxane System Free of a Support 41
Supported System Free of Methylaluminoxane 42
1.3.4 Supported Hybrid Catalyst for Multimodal Polyethylene 44
Challenges of Single Supported Systems 46
Challenges of Hybrid Supported Systems 46
Hybrid Systems 47
1.4 Conclusion 51
References 51
Chapter 2: Support Designed for Polymerization Processes 63
2.1 General Considerations 63
2.2 MgCl2-Based Support 64
2.2.1 MgCl2 Methods of Preparation 65
Emulsion 66
Spray Drying 66
Reactive Precipitation 67
2.3 SiO2-Based Support 68
2.3.1 Synthesis 68
Granular Silica Particles 68
Acidification-Polymerization 68
Gelation 69
Aging 69
Washing and Solvent Exchange 69
Drying 69
Spheroidal Silica Particles 70
2.3.2 Thermal Modification of the Silica Particle 70
2.4 Influence of Support Design on the Fragmentation Process 71
2.4.1 Polymer Particle Growth 73
2.4.2 Physical Properties of the Support Particles 74
2.4.3 Impact of Catalyst-Support System on the Polymerization Technology 75
2.4.4 Kinetics 76
2.5 Influence of Catalyst Support on Tailoring Polyolefin Grades 78
2.5.1 Ziegler-Natta Catalyst 78
High Impact Polypropylene 79
Differences in Support Design for HDPE and LLDPE 80
2.5.2 Chromium Catalyst 81
Influence of Catalyst Porosity and Surface Area 82
2.5.3 Metallocenes 83
2.6 Conclusion 84
References 84
Chapter 3: Fragmentation, Particle Growth and Single Particle Modelling 89
3.1 Introduction 89
3.2 Particle Fragmentation and Growth 92
3.2.1 The Fragmentation Step 93
3.2.2 Particle Growth 101
3.3 Single Particle Modeling 103
3.3.1 The Multigrain and Polymer Flow Models 103
3.3.2 Solving the PFM 108
Choice of Key Model Parameters and Boundary Conditions 108
Brief Overview of the Solution Methods 116
3.4 Conclusions 118
References 119
Chapter 4: Polymerization Kinetics and the Effect of Reactor Residence Time on Polymer Microstructure 123
4.1 Polyolefin Microstructure 123
4.1.1 Molecular Weight Distribution 124
4.1.2 Chemical Composition Distribution 127
4.1.3 Chain Sequence Length Distribution 129
4.2 Reaction Kinetics 129
4.2.1 Multi-Scale Approach 129
4.2.2 Polymerization Kinetic Scheme 130
4.2.3 Polymer Design 135
Single-Stage Processes 135
Effect of Hydrogen 136
Effect of Comonomer 136
Multi-Stage Processes 137
4.2.4 Microstructural Deconvolution Techniques 138
4.2.5 Deconvolution and Estimation of Kinetic Constants 142
4.3 Reactor Residence Time Distribution Effects 143
4.3.1 Bench-Scale Versus Industrial Reactors 143
4.3.2 Residence Time Distribution Fundamentals 145
4.3.3 Case Study: Effect of RTD on MWD and Chemical Composition 150
References 158
Chapter 5: Industrial Multimodal Processes 162
5.1 Introduction 162
5.2 Properties and Applications 163
5.3 Polyolefin Reactor Technologies 164
5.3.1 The Evolution of Industrial Polyolefin Manufacturing Technologies 164
5.3.2 Gas-Phase Reactor Technology 166
5.3.3 Slurry-Phase Ethylene Polymerization Reactors 169
5.3.4 Comparing Slurry and Gas-Phase Reactors: A Fundamental Approach 173
5.4 Polyolefin Multimodal Processes 177
5.4.1 Introduction 177
5.4.2 Multimodal PE Processes 180
The Split Loop Borstar Process 180
Advanced Cascade Process by Hostalen 187
The Spherilene C Process 189
5.4.3 Multimodal PP Processes 192
The Spheripol PP Process 192
Multi-zone Circulating Reactor (MZCR) Process Technology: Spherizone Process 197
The Borstar PP Process 199
The Hypol PP Process by Mitsui Chemicals 202
The Unipol II PP Process 205
5.5 Overview 208
References 209
Chapter 6: Multimodal Polypropylenes: The Close Interplay Between Catalysts, Processes and Polymer Design 211
6.1 Introduction 211
6.2 An Overview of the Main PP Processes and Catalyst Requirements 213
6.3 Tailoring the Continuous Phase: A Complex Undertake 220
6.3.1 Processes and Operating Conditions 220
6.3.2 Bulk Polymerisation and Design of Continuous Phase 221
6.3.3 Gas-Phase and Design of Continuous Phase 222
6.3.4 Hybrid Systems and Design of Continuous Phase 223
6.3.5 Some Process Tricks to Create and Enhance Multimodality 224
6.3.6 Unique Product Features Via Matrix Multimodality 225
6.4 Tailoring the Dispersed Phase: A Polymer Design Challenge 230
6.4.1 Which Processes for Multimodal Rubbers? 230
6.4.2 Additional Catalyst Requirements 232
6.4.3 Why Multimodal Rubbers? 236
6.5 Conclusions 240
References 241
Chapter 7: Bimodal Polyethylene: Controlling Polymer Properties by Molecular Design 248
7.1 Introduction 248
7.2 Molecular Structure and Properties of PE 250
7.3 Catalysts for the Synthesis of PE 253
7.3.1 Ziegler-Natta Catalysts 253
7.3.2 Phillips Catalysts 255
7.3.3 Single Site Catalysts/Metallocenes 256
7.4 Processes for the Production of PE 256
7.4.1 Suspension (Slurry) Process 257
Autoclave Process 257
Loop Process 257
7.4.2 Gas-Phase Process 257
7.4.3 Solution Process 258
7.4.4 Multistage Process 258
7.5 Multimodality: Tailoring the Polymer Properties 258
7.5.1 Benefits of Multimodality for PE 260
7.5.2 Multi-Reactor Design 262
7.5.3 One-Reactor Process 264
7.5.4 Properties of Bimodal PE Resins 266
7.5.5 Homogeneity 266
7.6 Summary and Conclusions 267
References 268
Summary and Perspectives 271
Index 275

Erscheint lt. Verlag 16.1.2019
Zusatzinfo IX, 276 p. 165 illus., 81 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Technik Bauwesen
Technik Maschinenbau
Wirtschaft
Schlagworte Multimodal Polymer Design • Multimodal Process • Multistage Polymerization • Particle growth • Polymerization • Polyolefins • Supported Catalysts
ISBN-10 3-030-03476-3 / 3030034763
ISBN-13 978-3-030-03476-4 / 9783030034764
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 13,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen der Berechnung und baulichen Ausbildung von Stahlbauten

von Jörg Laumann; Markus Feldmann; Jörg Frickel …

eBook Download (2022)
Springer Fachmedien Wiesbaden (Verlag)
119,99