Processing of Polymer-based Nanocomposites (eBook)

Processing-structure-property-performance relationships

Suprakas Sinha Ray (Herausgeber)

eBook Download: PDF
2018 | 1st ed. 2018
XV, 232 Seiten
Springer International Publishing (Verlag)
978-3-319-97792-8 (ISBN)

Lese- und Medienproben

Processing of Polymer-based Nanocomposites -
Systemvoraussetzungen
106,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Processing of polymer nanocomposites usually requires special attention since the resultant structure-micro- and nano-level, is directly influenced by among other factors, polymer/nano-additive chemistry and the processing strategy. This book consolidates knowledge, from fundamental to product development, on polymer nanocomposites processing with special emphasis on the processing-structure-property-performance relationships in a wide range of polymer nanocomposites. Furthermore, this book focuses on emerging processing technologies such as electrospinning, which has very exciting applications ranging from medical to filtration.  Additionally, the important role played by the nanoparticles in polymer blends structures has been illustrated in the current book, with special focus on fundamental aspects and properties of nanoparticles migration and interface crossing in immiscible polymer blend nanocomposites.

This book focuses heavily on the processing technologies and strategies and extensively addresses the processing-structure-property-performance relationships in a wide range of polymer nanocomposites, such as commodity polymers (chapter 1), engineering polymers (chapter 2), elastomers (chapter 3), thermosets (chapter 4), biopolymers (chapter 5), polymer blends (chapter 6), and electrospun polymer (chapter 7). The important role played by nanoparticles in polymer blends structures in particular is illustrated.
The book is useful to undergraduate and postgraduate students (polymer engineering, materials science & engineering, chemical & process engineering), as well as research & development personnel, engineers, and material scientists.



Professor Suprakas Sinha Ray was born in 1973 in India and completed his PhD studies at the University of Calcutta in 2001, and then postdoctoral fellow at Toyota Technological Institute and Laval University studying the structure-property relationship in nanoclay-containing polymer nanocomposites. He started working on fundamental understanding to real applications of polymer-based nanostructured materials when he joined the CSIR as a group leader. These studies advanced and broadened when he appointed as a chief researcher (level II, highest SET position in CSIR) and director of the DST-CSIR National Centre for Nanostructured Materials and growing to the present time with postdoctoral fellows, students, collaborators and industrial partners worldwide. Currently, more than 80 researchers, engineers and technologists are working with him. Prof. Ray is one of the most active and highly cited authors (his articles have been cited more than 14700 times, google scholar, h factor 44, Google/Scopus, S.S.Ray, S. Sinha Ray, S. Sinha-Ray), in the field of soft-nanostructured materials and his work has been featured on various international journal cover pages on 14 different occasions. Recently, he has been rated as a Top 1% of most impactful and influential scientists (Chemistry, Materials Science and 22 Science disciplines) by Thomson Reuters Essential Science Indicators, 2014. In 2011, he also has been rated as a Top 50 high impact chemist in the world (Feb. 2011, Thomson Reuter, probably youngest researcher in this list, 1.2 mil Chemists). So far he has given more than 30 plenary/keynote/invited presentations in various international conferences and organized/co-organized a number of international conferences. Ray is the author of 2 books, 16 book chapters on various aspects of polymer-based nano-structured materials & their applications, and author and co-author of 250 articles (including 17 review articles) in high-impact international journals, 14 articles in peer-review international conference proceedings; 30 articles in national and international conference proceedings. He also has 4 patents and 7 new demonstrated technologies shared with colleagues, collaborators and industrial partners. His team also commercialized 16 different grades of polylactide nanocomposites. Over the last 10 years, 32 PhD/Master students graduated under his direct supervision. Currently, he is serving as an Associate Editor/Editorial Board member of the RSC Advances, Macromolecular Materials and Engineering, Applied Nanoscience, Journal of Nanoscience and Nanotechnology, International Journal of Plastic Films and Sheeting, Applied Nanoscience, Journal of Nanomaterials, and Heliyon.

Professor Suprakas Sinha Ray was born in 1973 in India and completed his PhD studies at the University of Calcutta in 2001, and then postdoctoral fellow at Toyota Technological Institute and Laval University studying the structure-property relationship in nanoclay-containing polymer nanocomposites. He started working on fundamental understanding to real applications of polymer-based nanostructured materials when he joined the CSIR as a group leader. These studies advanced and broadened when he appointed as a chief researcher (level II, highest SET position in CSIR) and director of the DST-CSIR National Centre for Nanostructured Materials and growing to the present time with postdoctoral fellows, students, collaborators and industrial partners worldwide. Currently, more than 80 researchers, engineers and technologists are working with him. Prof. Ray is one of the most active and highly cited authors (his articles have been cited more than 14700 times, google scholar, h factor 44, Google/Scopus, S.S.Ray, S. Sinha Ray, S. Sinha-Ray), in the field of soft-nanostructured materials and his work has been featured on various international journal cover pages on 14 different occasions. Recently, he has been rated as a Top 1% of most impactful and influential scientists (Chemistry, Materials Science and 22 Science disciplines) by Thomson Reuters Essential Science Indicators, 2014. In 2011, he also has been rated as a Top 50 high impact chemist in the world (Feb. 2011, Thomson Reuter, probably youngest researcher in this list, 1.2 mil Chemists). So far he has given more than 30 plenary/keynote/invited presentations in various international conferences and organized/co-organized a number of international conferences. Ray is the author of 2 books, 16 book chapters on various aspects of polymer-based nano-structured materials & their applications, and author and co-author of 250 articles (including 17 review articles) in high-impact international journals, 14 articles in peer-review international conference proceedings; 30 articles in national and international conference proceedings. He also has 4 patents and 7 new demonstrated technologies shared with colleagues, collaborators and industrial partners. His team also commercialized 16 different grades of polylactide nanocomposites. Over the last 10 years, 32 PhD/Master students graduated under his direct supervision. Currently, he is serving as an Associate Editor/Editorial Board member of the RSC Advances, Macromolecular Materials and Engineering, Applied Nanoscience, Journal of Nanoscience and Nanotechnology, International Journal of Plastic Films and Sheeting, Applied Nanoscience, Journal of Nanomaterials, and Heliyon.

Preface 6
Contents 9
Contributors 14
1 Processing Nanocomposites Based on Commodity Polymers 15
1.1 Introduction 15
1.2 Processing of Commodity PNCs 16
1.2.1 Melt Mixing 17
1.2.2 In Situ Polymerization 18
1.2.3 Solution Mixing 19
1.3 Methods for Functionalizing Polymers for PNC Preparation 20
1.3.1 Modification of NPs 21
1.3.2 Modification of Polymers 24
1.4 Structure–Property Relationships in PNC 25
1.4.1 Mechanical Properties 25
1.4.2 Effect on Glass Transition Temperature 26
1.4.3 Thermal Stability 28
1.4.4 Thermal Conductivity 29
1.4.5 Electrical Properties 29
1.4.6 Fire Retardancy 31
1.4.7 Membrane Separation and Barrier Properties 31
1.5 Performance and Applications 31
1.5.1 Automotive Parts 32
1.5.2 Packaging Applications 33
1.5.3 Flammability 34
1.5.4 Other Applications 34
1.6 Challenges, Opportunities, and Future Trends 34
1.6.1 Challenges and Opportunities 34
1.6.2 Future Trends 35
1.7 Summary 36
References 36
2 Processing Nanocomposites Based on Engineering Polymers: Polyamides and Polyimides 40
2.1 Introduction 40
2.1.1 PA 41
2.1.2 PIs 42
2.1.3 Overview of Engineering Polymer-Based Nanocomposites 44
2.2 Processing Techniques 47
2.2.1 In Situ Polymerization 48
2.2.2 Solution Casting 48
2.2.3 Melt Compounding 48
2.2.4 Electrospinning 52
2.2.5 3D Printing 56
2.3 Polyamide Nanocomposites 58
2.3.1 Processing, Structure and Properties of PA/Clay Nanocomposites 58
2.3.2 Processing, Structure, and Properties of PA/CNT PNCs 63
2.3.3 Processing, Structure, and Properties of PA/Graphene/Graphene Derivative PNCs 65
2.4 PI Nanocomposites 67
2.4.1 In Situ Polymerization 67
2.4.2 Additive Manufacturing 69
2.4.3 Electrospinning 70
2.5 Conclusions and Future Outlook 72
References 73
3 Rubber Nanocomposites: Processing, Structure–Property Relationships, Applications, Challenges, and Future Trends 87
3.1 Introduction 88
3.2 Rubber Fabrication 88
3.3 Rubber Nanocomposite Manufacturing 89
3.3.1 Melt Compounding 89
3.3.2 Solution Mixing 89
3.3.3 In Situ Polymerization 90
3.3.4 Latex Compounding 90
3.4 Vulcanization Characteristics 91
3.5 Dynamic Properties of Filled Rubbers 93
3.6 Rubber/Clay Nanocomposites 97
3.6.1 Mechanical Properties 97
3.6.2 Barrier Properties 98
3.7 Rubber/Carbon Nanotube Nanocomposites 100
3.7.1 Mechanical Properties 101
3.7.2 Electrical Properties 102
3.7.3 Barrier Properties 104
3.8 Rubber/Graphene-Based Nanocomposites 104
3.8.1 Mechanical Properties 106
3.8.2 Electrical Properties 107
3.8.3 Barrier Properties 110
3.9 Applications 112
3.10 Conclusions and Future Trends 113
References 114
4 Processing Thermoset-Based Nanocomposites 119
4.1 Overview of Thermosets 119
4.1.1 Network Structure in Thermosets 121
4.1.2 Crosslink Density 121
4.2 Thermoset Nanocomposites 123
4.3 Processing Techniques for Thermoset Nanocomposites 124
4.3.1 Reactive Injection Molding 124
4.3.2 Resin Transfer Molding 124
4.3.3 Compression Molding 126
4.3.4 Casting 126
4.3.5 3D Printing 127
4.4 Clay-Based Thermoset Nanocomposites 127
4.4.1 Surface Functionalization 128
4.4.2 Techniques for Clay Dispersion 128
4.4.3 Properties of Nanoclay-Containing Thermoset Nanocomposites 131
4.5 Carbon Nanotube (CNT)- and Carbon Nanofiber (CNF)-Containg Thermoset Nanocomposites 133
4.5.1 Single-Scale System of CNT or CNF Thermoset Nanocomposites 134
4.5.2 Multiscale Composites 138
4.6 Conclusions and Outlook 142
References 143
5 Processing of Sustainable Polymer Nanocomposites 150
5.1 Introduction 150
5.2 Processing Methods for Polylactide, Polyhydroxybutyrate, and Starch Nanocomposites 152
5.2.1 General Overview of Processing Methods for Polymer Nanocomposites 152
5.2.2 Processing Strategies of PLA Nanocomposites 154
5.2.3 Processing Strategies for PHB Nanocomposites 155
5.2.4 Processing Strategies for Starch Nanocomposites 157
5.3 Relationships Between Structure and Properties of Polylactide, Polyhydroxybutyrate, and Starch Nanocomposites 160
5.3.1 General Overview of Relationships Between Structure and Properties of Polymer Nanocomposites 160
5.4 Performances and Applications of Polylactide, Polyhydroxybutyrate, and Starch Nanocomposites 165
5.4.1 Performance and Applications of Polymer Nanocomposites 165
5.4.2 PLA Nanocomposites 165
5.4.3 PHB Nanocomposites 166
5.4.4 Starch Nanocomposites 166
5.5 Challenges and Opportunities with Polylactide, Polyhydroxybutyrate, and Starch Nanocomposites 167
5.6 Conclusions and Future Trends in Biodegradable Polymer Nanocomposites 173
References 173
6 Processing of Polymer Blends, Emphasizing: Melt Compounding Influence of Nanoparticles on Blend Morphology and Rheology
6.1 Introduction 178
6.2 Melt Blending 178
6.3 Mixing Mechanism (Breakup and Coalescence) 179
6.4 Compatibilization 181
6.4.1 In Situ (Reactive) Compatibilization 181
6.4.2 Ex Situ (Physical) Compatibilization 184
6.4.3 Inorganic Particles as Compatibilizers 185
6.5 Effect of Particle Localization 187
6.5.1 Effects of Particle Size and Shape 189
6.6 Rheology 190
6.6.1 Simple Shear Flow 190
6.6.2 Small-Amplitude Oscillatory Shear (SAOS) Test 191
6.6.3 Large-Amplitude Oscillatory Shear (LAOS) Tests 194
6.7 Applications 196
6.7.1 Conductivity 196
6.7.2 Porosity 197
6.8 Conclusion 199
References 200
7 Electrospun Polymer Nanocomposites 208
7.1 Introduction 209
7.2 Electrospinning of Polymer Nanocomposites 209
7.2.1 Polymer Solution Properties 211
7.2.2 Processing Conditions 213
7.3 Advances in Nanofiber Preparation 215
7.4 Electrospun Nanofibers as Reinforcing Materials 215
7.5 Morphology–Property Relationships 217
7.5.1 Nanofiber Morphology 218
7.5.2 Mechanical Properties 224
7.5.3 Thermal Properties 226
7.6 Performance and Applications 227
7.6.1 Composite Applications 228
7.6.2 Non-reinforcement Applications 231
7.6.3 Other Applications 233
7.7 Challenges, Opportunities, and Future Trends 235
References 236
Index 239

Erscheint lt. Verlag 15.9.2018
Reihe/Serie Springer Series in Materials Science
Zusatzinfo XV, 232 p. 92 illus., 46 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Technik
Wirtschaft
Schlagworte biopolymers • blend morphology • commodity polymers • Elastomers • Electrospun Nanofibers • Electrospun polymer • Engineering Polymers • epoxy nanocomposites • melt compounding • morphology-property relationships • polyethylene nanocomposites • Polymer Blends • polymer modification • Polypropylene Nanocomposites • polyvinyl chloride nanocomposites • pvc nanocomposites • Rubber nanocomposites • Starch • sustainable polymers • Thermosets
ISBN-10 3-319-97792-X / 331997792X
ISBN-13 978-3-319-97792-8 / 9783319977928
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,6 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
DIN-Normen und Technische Regeln für die Elektroinstallation

von DIN Media GmbH

eBook Download (2023)
DIN Media GmbH (Verlag)
86,00