Applied Analytics through Case Studies Using SAS and R (eBook)
XX, 404 Seiten
Apress (Verlag)
978-1-4842-3525-6 (ISBN)
- Understand analytics and basic data concepts
- Use an analytical approach to solve Industrial business problems
- Build predictive model with machine learning techniques
- Create and apply analytical strategies
Deepti Gupta completed her MBA in Finance and PGPM in operation research in 2010. She has worked with KPMG and IBM private limited as Data Scientist and is currently working as a data science freelancer. Deepti has extensive experience in predictive modeling and machine learning with an expertise in SAS and R. Deepti has developed data science courses, delivered data science trainings, and conducted workshops for both corporate and academic institutions. She has written multiple blogs and white papers. Deepti has a passion for mentoring budding data scientists.
Examine business problems and use a practical analytical approach to solve them by implementing predictive models and machine learning techniques using SAS and the R analytical language. This book is ideal for those who are well-versed in writing code and have a basic understanding of statistics, but have limited experience in implementing predictive models and machine learning techniques for analyzing real world data. The most challenging part of solving industrial business problems is the practical and hands-on knowledge of building and deploying advanced predictive models and machine learning algorithms. Applied Analytics through Case Studies Using SAS and R is your answer to solving these business problems by sharpening your analytical skills. What You'll Learn Understand analytics and basic data concepts Use an analytical approach to solve Industrial business problems Build predictive model with machine learning techniquesCreate and apply analytical strategiesWho This Book Is ForData scientists, developers, statisticians, engineers, and research students with a great theoretical understanding of data and statistics who would like to enhance their skills by getting practical exposure in data modeling.
Deepti Gupta completed her MBA in Finance and PGPM in operation research in 2010. She has worked with KPMG and IBM private limited as Data Scientist and is currently working as a data science freelancer. Deepti has extensive experience in predictive modeling and machine learning with an expertise in SAS and R. Deepti has developed data science courses, delivered data science trainings, and conducted workshops for both corporate and academic institutions. She has written multiple blogs and white papers. Deepti has a passion for mentoring budding data scientists.
Applied Analytics through Case Studies Using SAS and RChapter 1: Role of Analytics in Various Industries
Chapter 2: Banking Case Study with Analytical Solutions
Chapter 3: Retail Case Study with Analytical Solutions
Chapter 4: Telecommunication Case Study with Analytical Solutions
Chapter 5: Healthcare Case Study with Analytical Solutions
Chapter 6: Airline Case Study with Analytical Solutions
Chapter 7: FMCG Case Study with Analytical Solutions
Erscheint lt. Verlag | 3.8.2018 |
---|---|
Zusatzinfo | XX, 404 p. 99 illus. |
Verlagsort | Berkeley |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Mathematik / Informatik ► Informatik ► Netzwerke | |
Mathematik / Informatik ► Informatik ► Programmiersprachen / -werkzeuge | |
Mathematik / Informatik ► Informatik ► Theorie / Studium | |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Finanz- / Wirtschaftsmathematik | |
Wirtschaft | |
Schlagworte | Banking • Business Analytics • FMCG • Healthcare • machine learning • R • SAS • Telecom |
ISBN-10 | 1-4842-3525-8 / 1484235258 |
ISBN-13 | 978-1-4842-3525-6 / 9781484235256 |
Haben Sie eine Frage zum Produkt? |
Größe: 8,3 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich