Deep Belief Nets in C++ and CUDA C: Volume 2 - Timothy Masters

Deep Belief Nets in C++ and CUDA C: Volume 2 (eBook)

Autoencoding in the Complex Domain

(Autor)

eBook Download: PDF
2018 | 1st ed.
XI, 258 Seiten
Apress (Verlag)
978-1-4842-3646-8 (ISBN)
Systemvoraussetzungen
56,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Discover the essential building blocks of a common and powerful form of deep belief net: the autoencoder. You'll take this topic beyond current usage by extending it to the complex domain for signal and image processing applications. Deep Belief Nets in C++ and CUDA C: Volume 2 also covers several algorithms for preprocessing time series and image data. These algorithms focus on the creation of complex-domain predictors that are suitable for input to a complex-domain autoencoder. Finally, you'll learn a method for embedding class information in the input layer of a restricted Boltzmann machine. This facilitates generative display of samples from individual classes rather than the entire data distribution. The ability to see the features that the model has learned for each class separately can be invaluable. 

At each step this book provides you with intuitive motivation, a summary of the most important equations relevant to the topic, and highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. 


What You'll Learn
  • Code for deep learning, neural networks, and AI using C++ and CUDA C
  • Carry out signal preprocessing using simple transformations, Fourier transforms, Morlet wavelets, and more
  • Use the Fourier Transform for image preprocessing
  • Implement autoencoding via activation in the complex domain
  • Work with algorithms for CUDA gradient computation
  • Use the DEEP operating manual

Who This Book Is For

Those who have at least a basic knowledge of neural networks and some prior programming experience, although some C++ and CUDA C is recommended.



Timothy Masters received a PhD in mathematical statistics with a specialization in numerical computing. Since then he has continuously worked as an independent consultant for government and industry. His early research involved automated feature detection in high-altitude photographs while he developed applications for flood and drought prediction, detection of hidden missile silos, and identification of threatening military vehicles. Later he worked with medical researchers in the development of computer algorithms for distinguishing between benign and malignant cells in needle biopsies. For the last twenty years he has focused primarily on methods for evaluating automated financial market trading systems. He has authored five books on practical applications of predictive modeling: Practical Neural Network Recipes in C++ (Academic Press, 1993) Signal and Image Processing with Neural Networks (Wiley, 1994) Advanced Algorithms for Neural Networks (Wiley, 1995) Neural, Novel, and Hybrid Algorithms for Time Series Prediction (Wiley, 1995) Assessing and Improving Prediction and Classification (CreateSpace, 2013) Deep Belief Nets in C++ and CUDA C: Volume I: Restricted Boltzmann Machines and Supervised Feedforward Networks (CreateSpace, 2015).

Discover the essential building blocks of a common and powerful form of deep belief net: the autoencoder. You'll take this topic beyond current usage by extending it to the complex domain for signal and image processing applications. Deep Belief Nets in C++ and CUDA C: Volume 2 also covers several algorithms for preprocessing time series and image data. These algorithms focus on the creation of complex-domain predictors that are suitable for input to a complex-domain autoencoder. Finally, you'll learn a method for embedding class information in the input layer of a restricted Boltzmann machine. This facilitates generative display of samples from individual classes rather than the entire data distribution. The ability to see the features that the model has learned for each class separately can be invaluable. At each step this book provides you with intuitive motivation, a summary of the most important equations relevant to the topic, and highly commented code for threaded computation on modern CPUs as well as massive parallel processing on computers with CUDA-capable video display cards. What You'll LearnCode for deep learning, neural networks, and AI using C++ and CUDA CCarry out signal preprocessing using simple transformations, Fourier transforms, Morlet wavelets, and moreUse the Fourier Transform for image preprocessingImplement autoencoding via activation in the complex domainWork with algorithms for CUDA gradient computationUse the DEEP operating manualWho This Book Is ForThose who have at least a basic knowledge of neural networks and some prior programming experience, although some C++ and CUDA C is recommended.

Timothy Masters received a PhD in mathematical statistics with a specialization in numerical computing. Since then he has continuously worked as an independent consultant for government and industry. His early research involved automated feature detection in high-altitude photographs while he developed applications for flood and drought prediction, detection of hidden missile silos, and identification of threatening military vehicles. Later he worked with medical researchers in the development of computer algorithms for distinguishing between benign and malignant cells in needle biopsies. For the last twenty years he has focused primarily on methods for evaluating automated financial market trading systems. He has authored five books on practical applications of predictive modeling: Practical Neural Network Recipes in C++ (Academic Press, 1993) Signal and Image Processing with Neural Networks (Wiley, 1994) Advanced Algorithms for Neural Networks (Wiley, 1995) Neural, Novel, and Hybrid Algorithms for Time Series Prediction (Wiley, 1995) Assessing and Improving Prediction and Classification (CreateSpace, 2013) Deep Belief Nets in C++ and CUDA C: Volume I: Restricted Boltzmann Machines and Supervised Feedforward Networks (CreateSpace, 2015).

0. Introduction1. Embedded Class Labels2. Signal Preprocessing3. Image Preprocessing4. Autoencoding5. Deep Operating Manual

Erscheint lt. Verlag 29.5.2018
Zusatzinfo XI, 258 p. 47 illus.
Verlagsort Berkeley
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Mathematik / Informatik Informatik Programmiersprachen / -werkzeuge
Informatik Theorie / Studium Compilerbau
Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Wirtschaft
Schlagworte AI • algorithms • artificial intel • autoencoding • Belief Networks • C++ • complex domain • computer vision • CUDA C • CV • deep belief • Deep learning • Domain • machine learning • Networks • Numerical • programming • source code
ISBN-10 1-4842-3646-7 / 1484236467
ISBN-13 978-1-4842-3646-8 / 9781484236468
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
An In-Depth Guide to the Spring Framework

von Iuliana Cosmina; Rob Harrop; Chris Schaefer; Clarence Ho

eBook Download (2023)
Apress (Verlag)
62,99