Practical Data Science (eBook)
XXV, 805 Seiten
Apress (Verlag)
978-1-4842-3054-1 (ISBN)
- Become fluent in the essential concepts and terminology of data science and data engineering
- Build and use a technology stack that meets industry criteria
- Master the methods for retrieving actionable business knowledge
- Coordinate the handling of polyglot data types in a data lake for repeatable results
Andreas François Vermeulen is Consulting Manager - Business Intelligence, Big Data, Data Science, Machine Learning, and Computational Analytics at Sopra-Steria, and a doctoral researcher at University St. Andrews on future concepts in massive distributed computing, mechatronics, big data, business intelligence, and deep learning. He owns and incubates the 'Rapid Information Factory' data processing framework. He is active in developing next-generation processing frameworks and mechatronics engineering with over 35 years of international experience in data processing, software development, and system architecture. Andre is a data scientist, doctoral trainer, corporate consultant, principal systems architect, and speaker/author/columnist on data science, distributed computing, big data, business intelligence, deep learning, and constraint programming. Andre received his bachelor degree at the North West University at Potchefstroom, his Master of Business Administration at University of Manchester, Master of Business Intelligence and Data Science degree at University of Dundee, and Doctor of Philosophy at University of St Andrews.
Learn how to build a data science technology stack and perform good data science with repeatable methods. You will learn how to turn data lakes into business assets.The data science technology stack demonstrated in Practical Data Science is built from components in general use in the industry. Data scientist Andreas Vermeulen demonstrates in detail how to build and provision a technology stack to yield repeatable results. He shows you how to apply practical methods to extract actionable business knowledge from data lakes consisting of data from a polyglot of data types and dimensions.What You'll LearnBecome fluent in the essential concepts and terminology of data science and data engineering Build and use a technology stack that meets industry criteriaMaster the methods for retrieving actionable business knowledgeCoordinate the handling ofpolyglot data types in a data lake for repeatable resultsWho This Book Is ForData scientists and data engineers who are required to convert data from a data lake into actionable knowledge for their business, and students who aspire to be data scientists and data engineers
Andreas François Vermeulen is Consulting Manager - Business Intelligence, Big Data, Data Science, Machine Learning, and Computational Analytics at Sopra-Steria, and a doctoral researcher at University St. Andrews on future concepts in massive distributed computing, mechatronics, big data, business intelligence, and deep learning. He owns and incubates the “Rapid Information Factory” data processing framework. He is active in developing next-generation processing frameworks and mechatronics engineering with over 35 years of international experience in data processing, software development, and system architecture. Andre is a data scientist, doctoral trainer, corporate consultant, principal systems architect, and speaker/author/columnist on data science, distributed computing, big data, business intelligence, deep learning, and constraint programming. Andre received his bachelor degree at the North West University at Potchefstroom, his Master of Business Administration at University of Manchester, Master of Business Intelligence and Data Science degree at University of Dundee, and Doctor of Philosophy at University of St Andrews.
Erscheint lt. Verlag | 21.2.2018 |
---|---|
Zusatzinfo | XXV, 805 p. 57 illus., 9 illus. in color. |
Verlagsort | Berkeley |
Sprache | englisch |
Themenwelt | Informatik ► Datenbanken ► Data Warehouse / Data Mining |
Informatik ► Theorie / Studium ► Künstliche Intelligenz / Robotik | |
Informatik ► Weitere Themen ► Hardware | |
Mathematik / Informatik ► Mathematik ► Finanz- / Wirtschaftsmathematik | |
Wirtschaft | |
Schlagworte | actionable business knowledge • data engineering • Data Lake • Data Science • data science technology stack • data scrubbing techniques • data vault and data mart • data warehouse bus matrix • Fog Computing • graph database • grids and clusters • IoT and embedded systems • machine learning • Machine-to-machine • MQTT • polyglot data science • Spark, Mesos, Akka, Cassandra, Kafka, Elasticsearch, R • super steps of the functional layer • torus network |
ISBN-10 | 1-4842-3054-X / 148423054X |
ISBN-13 | 978-1-4842-3054-1 / 9781484230541 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 8,0 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich