Trends and Perspectives in Linear Statistical Inference (eBook)

LinStat, Istanbul, August 2016
eBook Download: PDF
2018 | 1st ed. 2018
X, 257 Seiten
Springer International Publishing (Verlag)
978-3-319-73241-1 (ISBN)

Lese- und Medienproben

Trends and Perspectives in Linear Statistical Inference -
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This volume features selected contributions on a variety of topics related to linear statistical inference. The peer-reviewed papers from the International Conference on Trends and Perspectives in Linear Statistical Inference (LinStat 2016) held in Istanbul, Turkey, 22-25 August 2016, cover topics in both theoretical and applied statistics, such as linear models, high-dimensional statistics, computational statistics, the design of experiments, and multivariate analysis. The book is intended for statisticians, Ph.D. students, and professionals who are interested in statistical inference. 



Müjgan Tez is a professor at the Department of Mathematics of the Marmara University in Istanbul, Turkey. Her research interests include nonlinear models, measurement error of nonlinear models, geometry of statistical models, variance and covariance analysis, mixed models and meta-analysis.

Dietrich von Rosen graduated in mathematical statistics at Stockholm University, Sweden and is currently a professor at the Department of Energy and Technology of the Swedish University of Agricultural Sciences. His main research interest is multivariate analysis and its extensions, including repeated measurements analysis and high-dimensional analysis. 



Müjgan Tez is a professor at the Department of Mathematics of the Marmara University in Istanbul, Turkey. Her research interests include nonlinear models, measurement error of nonlinear models, geometry of statistical models, variance and covariance analysis, mixed models and meta-analysis.Dietrich von Rosen graduated in mathematical statistics at Stockholm University, Sweden and is currently a professor at the Department of Energy and Technology of the Swedish University of Agricultural Sciences. His main research interest is multivariate analysis and its extensions, including repeated measurements analysis and high-dimensional analysis. 

Foreword.- Comparison of estimation methods for inverse Weibull distribution (F. G. Akgül, B. Şenoğlu).- Liu-type negative binomial regression (Y. Asar).- Appraisal of performance of three tree-based classification methods (H. D. Asfha, B. K. Kilinc).- High-dimensional CLTs for individual Mahalanobis distances (D. Dai, T. Holgersson).- Bootstrap type-1 fuzzy functions approach for time series forecasting (A. Z. Dalar, E. Eğrioğlu).- A weighted ensemble learning by SVM for longitudinal data: Turkish bank bankruptcy (B. E. Erdogan, S. Ö. Akyüz).- The complementary exponential phase type distribution (S. Eryilmaz).-  Best linear unbiased prediction: Some properties of linear prediction sufficiency in the linear model (J. Isotalo, A. Markiewicz, S. Puntanen).- A note on circular m-consecutive-k-out-of-n: F Systems (C. Kan).- A categorical principal component regression on computer assisted instruction in probability domain (T. Kapucu, O. Ilk, İ. Batmaz).- Contemporary robust optimal design strategies (T. E. O’Brien).- Alternative approaches for the use of uncertain prior information to overcome the rank-deficiency of a linear model (B. Schaffrin, K. Snow, X. Fang).-  Exact likelihood-based point and interval estimation for lifetime characteristics of Laplace distribution based on hybrid Type-I and Type-II censored data (F. Su, N. Balakrishnan, X. Zhu).- Statistical inference for two-compartment model parameters with bootstrap method and genetic algorithm (Ö. Türkşen, M. Tez).

Erscheint lt. Verlag 1.2.2018
Reihe/Serie Contributions to Statistics
Contributions to Statistics
Zusatzinfo X, 257 p. 60 illus., 26 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Medizin / Pharmazie Allgemeines / Lexika
Wirtschaft
Schlagworte Estimators • high-dimensional statistical analysis • linear experiments • linear statistical inference • linear statistical models • mixed linear model • Model Selection • multivariate model • prediction and testing • Theoretical and Applied statistics • variance components
ISBN-10 3-319-73241-2 / 3319732412
ISBN-13 978-3-319-73241-1 / 9783319732411
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quellen der Erkenntnis oder digitale Orakel?

von Bernd Simeon

eBook Download (2023)
Springer Berlin Heidelberg (Verlag)
16,99
Klartext für Nichtmathematiker

von Guido Walz

eBook Download (2021)
Springer Fachmedien Wiesbaden (Verlag)
4,48