Trends and Perspectives in Linear Statistical Inference (eBook)
X, 257 Seiten
Springer International Publishing (Verlag)
978-3-319-73241-1 (ISBN)
This volume features selected contributions on a variety of topics related to linear statistical inference. The peer-reviewed papers from the International Conference on Trends and Perspectives in Linear Statistical Inference (LinStat 2016) held in Istanbul, Turkey, 22-25 August 2016, cover topics in both theoretical and applied statistics, such as linear models, high-dimensional statistics, computational statistics, the design of experiments, and multivariate analysis. The book is intended for statisticians, Ph.D. students, and professionals who are interested in statistical inference.
Müjgan Tez is a professor at the Department of Mathematics of the Marmara University in Istanbul, Turkey. Her research interests include nonlinear models, measurement error of nonlinear models, geometry of statistical models, variance and covariance analysis, mixed models and meta-analysis.
Dietrich von Rosen graduated in mathematical statistics at Stockholm University, Sweden and is currently a professor at the Department of Energy and Technology of the Swedish University of Agricultural Sciences. His main research interest is multivariate analysis and its extensions, including repeated measurements analysis and high-dimensional analysis.
Müjgan Tez is a professor at the Department of Mathematics of the Marmara University in Istanbul, Turkey. Her research interests include nonlinear models, measurement error of nonlinear models, geometry of statistical models, variance and covariance analysis, mixed models and meta-analysis.Dietrich von Rosen graduated in mathematical statistics at Stockholm University, Sweden and is currently a professor at the Department of Energy and Technology of the Swedish University of Agricultural Sciences. His main research interest is multivariate analysis and its extensions, including repeated measurements analysis and high-dimensional analysis.
Foreword.- Comparison of estimation methods for inverse Weibull distribution (F. G. Akgül, B. Şenoğlu).- Liu-type negative binomial regression (Y. Asar).- Appraisal of performance of three tree-based classification methods (H. D. Asfha, B. K. Kilinc).- High-dimensional CLTs for individual Mahalanobis distances (D. Dai, T. Holgersson).- Bootstrap type-1 fuzzy functions approach for time series forecasting (A. Z. Dalar, E. Eğrioğlu).- A weighted ensemble learning by SVM for longitudinal data: Turkish bank bankruptcy (B. E. Erdogan, S. Ö. Akyüz).- The complementary exponential phase type distribution (S. Eryilmaz).- Best linear unbiased prediction: Some properties of linear prediction sufficiency in the linear model (J. Isotalo, A. Markiewicz, S. Puntanen).- A note on circular m-consecutive-k-out-of-n: F Systems (C. Kan).- A categorical principal component regression on computer assisted instruction in probability domain (T. Kapucu, O. Ilk, İ. Batmaz).- Contemporary robust optimal design strategies (T. E. O’Brien).- Alternative approaches for the use of uncertain prior information to overcome the rank-deficiency of a linear model (B. Schaffrin, K. Snow, X. Fang).- Exact likelihood-based point and interval estimation for lifetime characteristics of Laplace distribution based on hybrid Type-I and Type-II censored data (F. Su, N. Balakrishnan, X. Zhu).- Statistical inference for two-compartment model parameters with bootstrap method and genetic algorithm (Ö. Türkşen, M. Tez).
Erscheint lt. Verlag | 1.2.2018 |
---|---|
Reihe/Serie | Contributions to Statistics | Contributions to Statistics |
Zusatzinfo | X, 257 p. 60 illus., 26 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Medizin / Pharmazie ► Allgemeines / Lexika | |
Wirtschaft | |
Schlagworte | Estimators • high-dimensional statistical analysis • linear experiments • linear statistical inference • linear statistical models • mixed linear model • Model Selection • multivariate model • prediction and testing • Theoretical and Applied statistics • variance components |
ISBN-10 | 3-319-73241-2 / 3319732412 |
ISBN-13 | 978-3-319-73241-1 / 9783319732411 |
Haben Sie eine Frage zum Produkt? |
Größe: 5,1 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich