Characterizing Interdependencies of Multiple Time Series - Yuzo Hosoya, Kosuke Oya, Taro Takimoto, Ryo Kinoshita

Characterizing Interdependencies of Multiple Time Series (eBook)

Theory and Applications
eBook Download: PDF
2017 | 1st ed. 2017
X, 133 Seiten
Springer Singapore (Verlag)
978-981-10-6436-4 (ISBN)
Systemvoraussetzungen
58,84 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book introduces academic researchers and professionals to the basic concepts and methods for characterizing interdependencies of multiple time series in the frequency domain. Detecting causal directions between a pair of time series and the extent of their effects, as well as testing the non existence of a feedback relation between them, have constituted major focal points in multiple time series analysis since Granger introduced the celebrated definition of causality in view of prediction improvement.

Causality analysis has since been widely applied in many disciplines. Although most analyses are conducted from the perspective of the time domain, a frequency domain method introduced in this book sheds new light on another aspect that disentangles the interdependencies between multiple time series in terms of long-term or short-term effects, quantitatively characterizing them. The frequency domain method includes the Granger noncausality test as a special case.

Chapters 2 and 3 of the book introduce an improved version of the basic concepts for measuring the one-way effect, reciprocity, and association of multiple time series, which were originally proposed by Hosoya. Then the statistical inferences of these measures are presented, with a focus on the stationary multivariate autoregressive moving-average processes, which include the estimation and test of causality change. Empirical analyses are provided to illustrate what alternative aspects are detected and how the methods introduced here can be conveniently applied. Most of the materials in Chapters 4 and 5 are based on the authors' latest research work. Subsidiary items are collected in the Appendix.




Yuzo Hosoya, Professor Emeritus, Tohoku University

Kosuke Oya, Osaka University

Taro Takimoto, Kyushu University

Ryo Kinoshita, Tokyo Keizai University

This book introduces academic researchers and professionals to the basic concepts and methods for characterizing interdependencies of multiple time series in the frequency domain. Detecting causal directions between a pair of time series and the extent of their effects, as well as testing the non existence of a feedback relation between them, have constituted major focal points in multiple time series analysis since Granger introduced the celebrated definition of causality in view of prediction improvement.Causality analysis has since been widely applied in many disciplines. Although most analyses are conducted from the perspective of the time domain, a frequency domain method introduced in this book sheds new light on another aspect that disentangles the interdependencies between multiple time series in terms of long-term or short-term effects, quantitatively characterizing them. The frequency domain method includes the Granger noncausality test as a special case.Chapters 2 and 3 of the book introduce an improved version of the basic concepts for measuring the one-way effect, reciprocity, and association of multiple time series, which were originally proposed by Hosoya. Then the statistical inferences of these measures are presented, with a focus on the stationary multivariate autoregressive moving-average processes, which include the estimation and test of causality change. Empirical analyses are provided to illustrate what alternative aspects are detected and how the methods introduced here can be conveniently applied. Most of the materials in Chapters 4 and 5 are based on the authors' latest research work. Subsidiary items are collected in the Appendix.

Yuzo Hosoya, Professor Emeritus, Tohoku UniversityKosuke Oya, Osaka UniversityTaro Takimoto, Kyushu UniversityRyo Kinoshita, Tokyo Keizai University

1: Introduction to statistical causal analysis.-  2: Measures of one-way effect, reciprocity and association.- 3: Partial measures of interdependence.- 4: Inference based on the vector autoregressive and moving average model.- 5: Inference on change in causality measures.- 6: Simulation performance of estimation methods.- 7: Empirical analysis of macroeconomic series.- 8: Empirical analysis of change in causality measures.- 9: Conclusion.- Appendix.- References.- Index.

Erscheint lt. Verlag 26.10.2017
Reihe/Serie JSS Research Series in Statistics
JSS Research Series in Statistics
SpringerBriefs in Statistics
SpringerBriefs in Statistics
Zusatzinfo X, 133 p. 32 illus.
Verlagsort Singapore
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik Computerprogramme / Computeralgebra
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Medizin / Pharmazie Allgemeines / Lexika
Sozialwissenschaften Soziologie Empirische Sozialforschung
Wirtschaft
Schlagworte Autoregressive Moving-average Model • Canonical Factorization • Causal Analysis • Large Sample Test • Prediction Error
ISBN-10 981-10-6436-9 / 9811064369
ISBN-13 978-981-10-6436-4 / 9789811064364
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 3,3 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich