Wood Polymer Nanocomposites (eBook)

Chemical Modifications, Properties and Sustainable Applications
eBook Download: PDF
2017 | 1st ed. 2018
XV, 314 Seiten
Springer International Publishing (Verlag)
978-3-319-65735-6 (ISBN)

Lese- und Medienproben

Wood Polymer Nanocomposites - Md Rezaur Rahman
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book shows how chemical modifications influence some properties of wood nanocomposites. It describes suitable and effective chemical modifications that strengthen the physico-mechanical, thermal and morphological properties of wood. The authors provide intuitive explanation of the various types of chemical modifications applied to polymer cell walls in wood. They emphasize the reaction changes in wood cell walls due to the chemical modifications. Increased mechanical strength, improved thermal stability as well as the efficient retardancy against fungi attack are described. This book concludes summarizing the potential applications of wood-based nanocomposites taking into account sustainability and economic aspects.



Md Rezaur Rahman is a Senior Lecturer (Assistant Professor) at the Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), Malaysia and also Visiting research fellow at Faculty of Engineering, Tokushima University, Japan since June 2012. His research interests include, among others, conducting polymers, Polymer Nanocomposites, Nanocellulose (cellulose nanocrystals and nanofibrillar), and Polymer blends.

Md Rezaur Rahman is a Senior Lecturer (Assistant Professor) at the Department of Chemical Engineering and Energy Sustainability, Faculty of Engineering, Universiti Malaysia Sarawak (UNIMAS), Malaysia and also Visiting research fellow at Faculty of Engineering, Tokushima University, Japan since June 2012. His research interests include, among others, conducting polymers, Polymer Nanocomposites, Nanocellulose (cellulose nanocrystals and nanofibrillar), and Polymer blends.

Preface 6
Contents 7
1 Introduction to Reinforcing Potential of Various Clay and Monomers Dispersed Wood Nanocomposites’ 16
Abstract 16
1 Introduction 16
2 Problem Statement 18
3 Literature Review 19
3.1 Enhancement of Wood Quality 19
3.2 Modern Policies to Growth Wood Quality 20
3.3 Chemical Modification of Wood 21
3.3.1 Reaction with Acid Chlorides 22
3.3.2 Esterification of Wood by Carboxylic Acids 22
3.3.3 Wood Modification by Ketene 23
3.3.4 Wood Modification by Aldehydes 23
3.3.5 Wood Modification by Isocyanates 24
3.3.6 Wood Modification by Epoxides 24
3.3.7 Wood Modification by Cyanoethylation 25
3.3.8 Wood Modification with Alkyl Halide 25
3.3.9 Wood Modification by ?-Propiolactone 25
3.3.10 Wood Modification by Cyclic Anhydride 26
3.3.11 Wood Modification by Acrylic Anhydride 26
3.3.12 Oxidation of Wood 27
3.4 Wood Modifications by Impregnation Technique 27
3.4.1 Wood Impregnated by Monomer and Prepolymer 28
3.4.2 Enhancement of Wood Properties by Polymers Impregnation 28
3.4.3 Wood Impregnated by Vinyl Monomers 29
3.4.4 Wood Impregnated by Methyl Methacrylate (MMA) 29
3.4.5 Wood Impregnated by Styrene 31
3.4.6 Wood Impregnated by Vinyl Chloride 32
3.4.7 Wood Impregnated by Hydroxymethylacrylate and Ethyl-{{/varvec /upalpha}}-Hydroxymethylacrylate 32
3.4.8 Wood Impregnated by Phenolic Resin 33
3.4.9 Wood Impregnated by Polyurethane 33
3.4.10 Wood Impregnated by Melamine Formaldehyde 33
3.5 Wood Impregnated by Inorganic Substance 34
3.5.1 Wood Impregnated by Combination of Different Monomers System 35
3.5.2 Methyl Methacrylate (MMA) Based Wood Polymer Nanocomposites (WPNCs) 36
3.5.3 Alkali Pretreated Wood Polymer Nanocomposites (WPNCs) 38
3.5.4 Benzene Diazonium Salt Modified Wood Polymer Nanocomposites (WPNCs) 39
3.5.5 Nanotechnology for Wood Polymer Nanocomposites 41
4 Summary 44
References 45
2 Preparation and Characterizations of Various Clay- and Monomers-Dispersed Wood Nanocomposites 52
Abstract 52
1 Overview 52
2 Methods Related for Wood Polymer Nanocomposites (WPNC) 53
2.1 Curing Methods for Wood Polymer Nanocomposites (WPNC) Preparation 53
2.2 Wood-Hardening Process 54
2.3 Monomer and Polymer Treatments 55
2.4 Other Treatments 58
2.5 Combination of Two or Three Monomers 58
2.6 Chemical Impregnation and Compression of Wood 58
2.7 Summary of Wood Quality Improvement Methods and Technologies 59
3 Methods 60
3.1 Flowchart of Project 62
3.2 Preparation of WPNCs 62
3.3 Characterization of Wood Polymer Nanocomposites (WPNC) 63
3.3.1 Fourier Transform Infrared Spectroscopy (FT-IR) 63
3.3.2 Compression Test 66
3.3.3 Thermogravimetric Analysis (TGA) 68
3.3.4 Scanning Electron Microscopy (SEM) 75
4 Summary 79
References 80
3 Combined Styrene/MMA/Nanoclay Crosslinker Effect on Wood Polymer Nanocomposites (WPNCs) 84
Abstract 84
1 Introduction 84
2 Experimental 85
2.1 Materials 85
2.2 Preparation of Monomers 86
2.3 Impregnation of Wood Specimens/Co-polymerization Reaction with Cellulose in Wood Cell 86
2.4 Microstructural Characterizations 87
2.4.1 Fourier Transform Infrared Spectroscopy (FT-IR) 87
2.4.2 Compression Test 87
2.4.3 Thermogravimetric Analysis (TGA) 88
2.4.4 Scanning Electron Microscopy (SEM) 88
3 Results and Discussion 88
3.1 Weight Percent Gain (WPG %) 88
3.2 Fourier Transform Infrared Spectroscopy (FT-IR) 89
3.3 Mechanical Properties Test 89
3.4 Thermogravimetric Analysis (TGA) 91
3.5 Scanning Electron Microscopy (SEM) Analysis 92
4 Conclusion 93
Acknowledgements 94
References 94
4 Oxidation of Wood Species by Sodium Metaperiodate and Impregnation with Phenyl Hydrazine 96
Abstract 96
1 Introduction 96
2 Experimental 98
2.1 Materials 98
2.2 Specimen Preparation 98
2.3 Microstructural Characterizations 98
2.3.1 Fourier Transform Infrared Spectroscopy (FT-IR) 98
2.3.2 Scanning Electron Microscopy (SEM) 98
2.3.3 Dynamic Mechanical Thermal Analysis (DMTA) 99
2.3.4 Free-Free Flexural Vibration Testing 99
2.3.5 Determination of MOE and MOR Using Three Point Bending Test 100
2.3.6 Determination of Static Young’s Modulus (Es) Using Compression Parallel to Grain Test 101
2.3.7 Laboratory Fungal Decay Resistance Test 101
2.3.8 Water Uptake 102
3 Results and Discussion 102
3.1 Fourier Transform Infrared Spectroscopy (FT-IR) 102
3.2 Storage Modulus (log E?) and Loss Tangent (tan ?) of Raw Wood, WPNC, and PTWPNC 103
3.3 Dynamic Young’s Modulus of Raw Wood, WPNC, and PTWPNC 105
3.4 MOE and MOR Measurement 107
3.5 Static Young’s Modulus (E) Measurement 110
3.6 Fungal Decay Resistance Test 110
3.7 Water Uptake 112
3.8 Scanning Electron Microscopy (SEM) Analysis 113
4 Conclusion 114
References 116
5 Characterization of N,N-Dimethylacetamide Impregnated Wood Polymer Nanocomposites (WPNCs) 117
Abstract 117
1 Introduction 117
2 Materials and Methods 118
2.1 Materials 118
2.2 Manufacturing of Wood Polymer Nanocomposites 118
2.3 Microstructural Characterizations 119
2.3.1 Fourier Transform Infrared Spectroscopy (FT-IR) 119
2.3.2 X-ray Diffraction (XRD) 119
2.3.3 Thermogravimetric Analysis (TGA) 119
2.3.4 Differential Scanning Calorimetric (DSC) 119
2.3.5 Scanning Electron Microscopy (SEM) 120
2.3.6 Free-Free Flexural Vibration Testing 120
2.3.7 Three-Point Bending Test for MOE and MOR 121
2.3.8 Compression Parallel to Grain Test for Static Young’s Modulus (Es) 121
3 Results and Discussion 122
3.1 Fourier Transform Infrared Spectroscopy (FT-IR) 122
3.2 Thermogravimetric Analysis (TGA) 123
3.3 Differential Scanning Calorimetry (DSC) 125
3.4 Dynamic Young’s Modulus 128
3.5 MOE and MOR Measurement 129
3.6 Static Young’s Modulus (E) 131
3.7 X-ray Diffraction (XRD) 131
3.8 Scanning Electron Microscopy (SEM) 133
4 Conclusion 134
Acknowledgements 134
References 134
6 Mechanical and Thermal Characterization of Urea-Formaldehyde Impregnated Wood Polymer Nanocomposites (WPNCs) 136
Abstract 136
1 Introduction 136
2 Materials and Methods 137
2.1 Materials 137
2.2 Manufacturing of Wood Polymer Nanocomposites 138
2.3 Microstructural Characterizations 138
3 Result and Discussion 138
3.1 FT-IR 138
3.2 TGA 139
3.3 DSC 140
3.4 Dynamic Young’s Modulus Measurement 143
3.5 MOE and MOR Measurement 143
3.6 Static Young’s Modulus (E) Measurement 146
3.7 XRD Analysis 147
3.8 SEM 147
4 Conclusion 148
Acknowledgements 148
References 149
7 Characterization of Epoxy/Nanoclay Wood Polymer Nanocomposites (WPNCs) 150
Abstract 150
1 Introduction 150
2 Materials and Methods 151
2.1 Materials 151
2.2 Preparation of Solution Through Impregnation 152
2.3 Manufacturing of Wood Polymer Nanocomposites 152
3 Result and Discussion 152
3.1 Fourier Transform Infrared Spectroscopy (FT-IR) Analysis 152
3.2 Thermogravimetric Analysis (TGA) 154
3.3 Dynamic Young’s Modulus Measurement 154
3.4 Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) Measurement 156
3.5 Static Young’s Modulus (E) Measurement 159
3.6 X-ray Diffraction (XRD) Analysis 159
3.7 Scanning Electron Microscopy (SEM) Analysis 160
4 Conclusion 161
Acknowledgements 162
References 162
8 Influence of Nanoclay/Phenol Formaldehyde Resin on Wood Polymer Nanocomposites 163
Abstract 163
1 Introduction 163
2 Materials and Methods 164
2.1 Materials 164
2.2 Impregnation Solutions Preparation 164
2.3 Fabrication of Wood Polymer Nanocomposites (WPNCs) 165
3 Result and Discussion 165
3.1 Fourier Transform Infrared Spectroscopy Analysis 165
3.2 Thermogravimetric Analysis 167
3.3 Dynamic Young’s Modulus Measurement 168
3.4 Modulus of Elasticity and Modulus of Rupture Measurement 169
3.5 Static Young’s Modulus Measurement 171
3.6 X-ray Diffraction Analysis 172
3.7 Scanning Electron Microscopy Analysis 174
4 Conclusion 174
Acknowledgements 175
References 175
9 Clay Dispersed Styrene-co-glycidyl Methacrylate Impregnated Kumpang Wood Polymer Nanocomposites: Impact on Mechanical and Morphological Properties 177
Abstract 177
1 Introduction 177
2 Experimental 180
2.1 Materials 180
2.2 Specimen Preparation 180
2.3 Preparation of Wood Polymer Nanocomposites (WPNCs) 180
2.4 Microstructural Characterizations 181
2.4.1 Determination of Water Uptake 181
2.4.2 Fourier Transform Infrared Spectroscopy (FT-IR) 181
2.4.3 Modulus of Rupture (MOR), Modulus of Elasticity (MOE), and Dynamic Young’s Modulus (Ed) Measurements 181
2.4.4 Scanning Electron Microscopy (SEM) 182
3 Results and Discussion 182
3.1 Fourier Transform Infrared Spectroscopy (FT-IR) 182
3.2 Modulus of Rupture (MOR), Modulus of Elasticity (MOE) and Dynamic Young’s Modulus (Ed) Measurements 184
3.3 Weight Percentage Gain (WPG) and Water Uptake (WU) 185
3.4 Scanning Electron Microscopy (SEM) 186
4 Conclusion 187
Acknowledgements 187
References 188
10 Physico-mechanical, Morphological, and Thermal Properties of Clay Dispersed Styrene-co-Maleic Acid Impregnated Wood Polymer Nanocomposites 190
Abstract 190
1 Introduction 190
2 Experimental 192
2.1 Materials 192
2.2 Specimen Preparation 192
2.3 Preparation of Wood Polymer Nanocomposites (WPNCs) 193
2.4 Microstructural Characterizations 193
2.4.1 Determination of Weight Percentage Gain (WPG) 193
2.4.2 Determination of Water Uptake (WU) 193
2.4.3 Fourier Transform Infrared Spectroscopy (FT-IR) 194
2.4.4 X-ray Diffraction (XRD) Analysis 194
2.4.5 Scanning Electron Microscopy (SEM) 194
2.4.6 Modulus of Rupture (MOR), Modulus of Elasticity (MOE), and Dynamic Young’s Modulus (Ed) Measurements 194
2.4.7 Thermogravimetric Analysis (TGA) 195
2.4.8 Differential Scanning Calorimetric Testing (DSC) 195
3 Results and Discussion 196
3.1 FT-IR 196
3.1.1 X-ray Diffraction (XRD) Analysis 197
3.2 Scanning Electron Microscopy (SEM) 198
3.3 MOR, MOE, and Ed 199
3.4 Weight Percentage Gain (WPG) and Water Uptake (WU) 201
3.5 Thermogravimetric Analysis (TGA) 202
3.6 Differential Scanning Calorimetry (DSC) 204
4 Conclusion 205
Acknowledgements 205
References 205
11 Preparation and Characterizations of Clay-Dispersed Styrene-co-Ethylene Glycol Dimethacrylate-Impregnated Wood Polymer Nanocomposites 209
Abstract 209
1 Introduction 210
2 Experimental 211
2.1 Materials 211
2.2 Specimen Preparation 212
2.3 Preparation of Wood Polymer Nanocomposites (WPNCs) 212
2.4 Microstructural Characterizations 212
2.4.1 Determination of Weight Percentage Gain (WPG) 212
2.4.2 Determination of Water Uptake (WU) 213
2.4.3 Fourier Transform Infrared Spectroscopy (FT-IR) 213
2.4.4 X-Ray Diffraction (XRD) Analysis 213
2.4.5 Scanning Electron Microscopy (SEM) 213
2.4.6 Modulus of Rupture (MOR), Modulus of Elasticity (MOE), and Dynamic Young’s Modulus (Ed) Measurements 214
2.4.7 Thermogravimetric Analysis (TGA) 214
2.4.8 Differential Scanning Calorimetric Testing (DSC) 215
3 Results and Discussion 215
3.1 FT-IR 215
3.2 X-Ray Diffraction (XRD) Analysis 216
3.3 Scanning Electron Microscopy (SEM) 217
3.4 Modulus of Rupture (MOR), Modulus of Elasticity (MOE), and Dynamic Young’s Modulus (Ed) Measurements 219
3.5 Weight Percentage Gain (WPG) and Water Uptake (WU) 220
3.6 Thermogravimetric Analysis (TGA) 221
3.7 Differential Scanning Calorimetry (DSC) 223
4 Conclusion 224
Acknowledgements 225
References 225
12 Physico-Mechanical, Thermal, and Morphological Properties of Styrene-co-3-(Trimethoxysilyl)Propyl Methacrylate with Clay Impregnated Wood Polymer Nanocomposites 228
Abstract 228
1 Introduction 228
2 Experimental 230
2.1 Materials 230
2.2 Specimen Preparation 230
2.3 Preparation of Wood Polymer Nanocomposites 231
2.4 Characterizations 231
2.4.1 Determination of Weight Percentage Gain (WPG) 231
2.4.2 Determination of Water Uptake (WU) 231
2.4.3 Fourier Transform Infrared Spectroscopy (FT-IR) 232
2.4.4 X-ray Diffraction (XRD) Analysis 232
2.4.5 Scanning Electron Microscopy (SEM) 232
2.4.6 Modulus of Rupture (MOR), Modulus of Elasticity (MOE), and Dynamic Young’s Modulus (Ed) Measurements 232
2.4.7 Thermogravimetric Analysis (TGA) 233
3 Results and Discussion 234
3.1 Fourier Transform Infrared Spectroscopy (FT-IR) Analysis 234
3.2 X-ray Diffraction (XRD) Analysis 234
3.3 Scanning Electron Microscopy (SEM) 237
3.4 MOR, MOE, and Ed 238
3.5 Weight Percentage Gain (WPG) and Water Uptake (WU) 239
3.6 Thermogravimetric Analysis (TGA) 239
4 Conclusion 242
Acknowledgments 242
References 243
13 Acrylonitrile/Butyl Methacrylate/Halloysite Nanoclay Impregnated Sindora Wood Polymer Nanocomposites (WPNCs): Physico-mechanical, Morphological and Thermal Properties 246
Abstract 246
1 Introduction 247
2 Experimental 248
2.1 Materials 248
2.2 Preparation of Acrylonitrile/Butyl Methacrylate/Halloysite Nanoclay Wood Polymer Nanocomposites (AN-co-BMA-HNC WPNCs) 248
2.3 Impregnation of AN-co-BMA-HNC WPNCs 249
2.4 Microstructural Characterizations 249
2.4.1 Fourier Transform Infrared Spectroscopy (FT-IR) 249
2.4.2 Scanning Electron Microscopy (SEM) 250
2.4.3 Three-Point Flexural Test 250
2.4.4 Dynamic Mechanical Thermal Analysis (DMTA) 251
2.4.5 Thermogravimetric Analysis (TGA) 251
2.4.6 Differential Scanning Calorimetry (DSC) Analysis 251
2.4.7 Moisture Absorption Test 251
3 Results and Discussion 252
3.1 Weight Percent Gain (WPG %) 252
3.2 Fourier Transform Infrared Spectroscopy (FT-IR) 252
3.3 Scanning Electron Microscopy (SEM) Analysis 254
3.4 Three-Point Flexural Test 255
3.5 Dynamic Mechanical Thermal Analysis (DMTA) 255
3.6 Thermogravimetric Analysis (TGA) 258
3.7 Differential Scanning Calorimetry (DSC) Analysis 261
3.8 Moisture Absorption Analysis 261
4 Conclusion 262
Acknowledgements 263
References 263
14 Studies on the Physical, Mechanical, Thermal and Morphological Properties of Impregnated Furfuryl Alcohol-co-Glycidyl Methacrylate/Nanoclay Wood Polymer Nanocomposites 266
Abstract 266
1 Introduction 267
2 Experimental 268
2.1 Materials 268
2.2 Preparation of Furfuryl Alcohol/Glycidyl Methacrylate/Halloysite Nanoclay Wood Nanocomposites (WPNCs) (FA-co-GMA-HNC WPNCs) 268
2.3 Impregnation of FA-co-GMA-HNC WPNCs 269
2.4 Microstructural Characterizations 269
2.4.1 Fourier Transform Infrared Spectroscopy (FT-IR) 269
2.4.2 Scanning Electron Microscopy (SEM) 269
2.4.3 Three-Point Flexural Test 270
2.4.4 Dynamic Mechanical Thermal Analysis (DMTA) 270
2.4.5 Thermogravimetric Analysis (TGA) 270
2.4.6 Differential Scanning Calorimetry (DSC) Analysis 271
2.4.7 Moisture Absorption Test 271
3 Results and Discussion 271
3.1 Weight Percent Gain (WPG %) 271
3.2 Fourier Transform Infrared Spectroscopy (FT-IR) 272
3.3 Scanning Electron Microscopy (SEM) Analysis 272
3.4 Three-Point Flexural Test 273
3.5 Dynamic Mechanical Thermal Analysis (DMTA) 276
3.6 Thermogravimetric Analysis (TGA) 278
3.7 Differential Scanning Calorimetry (DSC) Analysis 279
3.8 Moisture Absorption Analysis 281
4 Conclusion 282
Acknowledgements 282
References 282
15 Nanoclay Dispersed Furfuryl Alcohol-co-Ethyl Methacrylate Wood Polymer Nanocomposites: The Enhancement on Physico-mechanical and Thermal Properties 284
Abstract 284
1 Introduction 285
2 Experimental 286
2.1 Materials 286
2.2 Methods 286
2.2.1 Preparation of Furfuryl Alcohol/2-Ethylhexyl Methacrylate/Halloysite Nanoclay Wood Polymer Nanocomposites (FA-co-EHMA-HNC WPNCs) 286
2.2.2 Impregnation of Wood Specimens with FA-co-EHMA-HNC 286
2.3 Microstructural Characterizations 287
2.3.1 Fourier Transform Infrared Spectroscopy (FT-IR) 287
2.3.2 Scanning Electron Microscopy (SEM) 287
2.3.3 Three-Point Flexural Test 287
2.3.4 Dynamic Mechanical Thermal Analysis (DMTA) 288
2.3.5 Thermogravimetric Analysis (TGA) 288
2.3.6 Differential Scanning Calorimetry (DSC) Analysis 289
2.3.7 Moisture Absorption Test 289
3 Results and Discussion 289
3.1 Weight Percent Gain (WPG %) 289
3.2 Fourier Transform Infrared Spectroscopy (FT-IR) 289
3.3 Scanning Electron Microscopy (SEM) Analysis 291
3.4 Three-Point Flexural Test 293
3.5 Dynamic Mechanical Thermal Analysis (DMTA) 294
3.6 Thermogravimetric Analysis (TGA) 296
3.7 Differential Scanning Calorimetry (DSC) Analysis 297
3.8 Moisture Absorption Analysis 299
4 Conclusion 300
Acknowledgements 300
References 300
16 Sustainable Application of Various Monomer/Clay Dispersed Wood Polymer Nanocomposites 303
Abstract 303
1 Introduction 303
2 Experimental 306
2.1 Materials 306
2.2 Preparation of ST-co-MMM-Nanoclay 307
2.3 Impregnation of Wood Specimens with ST-co-MMM-Nanoclay 308
2.4 Specimen Preparation 308
2.5 Preparation of Different WPNCs and WPCs 309
2.6 Decay Tests for Wood Specimens with ST-co-MMM-Nanoclay 309
2.7 Laboratory Fungal Decay Resistance Test for WPCs and WPNC 309
3 Results and Discussion 311
3.1 Decay Test for Wood Specimens with ST-co-MMM-Nanoclay 311
3.2 Decay Resistance of Styrene-co-3-(Trimethoxysilyl) Propyl Methacrylate with Clay Impregnated Wood Polymer Nanocomposites 313
3.3 Investigation of Decay Resistance Properties of Clay Dispersed Styrene-co-Ethylene Glycol Dimethacrylate Impregnated Wood Polymer Nanocomposites 315
3.4 Clay Dispersed Styrene-co-Maleic Acid Impregnated Wood Polymer Nanocomposites: Impact on Decay Resistance Properties 316
3.5 Clay Dispersed Styrene-co-Glycidyl Ethacrylate Impregnated Wood Polymer Nanocomposites: Impact on Decay Resistance Properties 317
3.6 Decay Resistance Characterization of Wood Polymer Composites Impregnated by 4-Methyl Catechol at Various pH Levels 318
4 Conclusion 319
Acknowledgements 319
References 319

Erscheint lt. Verlag 6.9.2017
Reihe/Serie Engineering Materials
Zusatzinfo XV, 314 p. 153 illus., 49 illus. in color.
Verlagsort Cham
Sprache englisch
Themenwelt Technik Maschinenbau
Wirtschaft
Schlagworte chemical monomers • clay nanoparticles • cross linker effect • monomer nanoclay combination • nanoscale fillers • Wood Science and Technology
ISBN-10 3-319-65735-6 / 3319657356
ISBN-13 978-3-319-65735-6 / 9783319657356
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 13,1 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Funktion, Gestaltung und Berechnung

von Karl-Heinz Decker; Karlheinz Kabus

eBook Download (2023)
Carl Hanser Fachbuchverlag
39,99