Practical AI for Business Leaders, Product Managers, and Entrepreneurs

Buch | Softcover
240 Seiten
2022
De Gruyter (Verlag)
978-1-5015-1464-7 (ISBN)
49,95 inkl. MwSt
Most economists agree that AI is a general purpose technology (GPT) like the steam engine, electricity, and the computer. AI will drive innovation in all sectors of the economy for the foreseeable future. Practical AI for Business Leaders, Product Managers, and Entrepreneurs is a technical guidebook for the business leader or anyone responsible for leading AI-related initiatives in their organization. The book can also be used as a foundation to explore the ethical implications of AI. 

Authors Alfred Essa and Shirin Mojarad provide a gentle introduction to foundational topics in AI. Each topic is framed as a triad: concept, theory, and practice. The concept chapters develop the intuition, culminating in a practical case study. The theory chapters reveal the underlying technical machinery. The practice chapters provide code in Python to implement the models discussed in the case study.

With this book, readers will learn:

  • The technical foundations of machine learning and deep learning
  • How to apply the core technical concepts to solve business problems
  • The different methods used to evaluate AI models
  • How to understand model development as a tradeoff between accuracy and generalization
  • How to represent the computational aspects of AI using vectors and matrices
  • How to express the models in Python by using machine learning libraries such as scikit-learn, statsmodels, and keras

Alfred Essa has led advanced analytics, machine learning, and information technology teams in academia and industry. He has served as Simon Fellow at Carnegie Mellon University, VP of Analytics and R&D at McGraw Hill Education, and CIO at MIT’s Sloan School of Management. He is a graduate of Haverford College and Yale University.

Shirin Mojarad is a senior machine learning specialist at Google Cloud. Previously, she was a senior data scientist at Apple where she worked on AB experimentation, causal inference, and metrics design. She has experience applying AI and machine learning to five vertical markets in Big Data: healthcare, finance, educational technology, high tech, and cloud technology. She received her master’s and Ph.D. from Newcastle University, United Kingdom.

Introduction

What is AI and why it is at the center of major business transformation?

How is it related to machine learning?

What is deep learning, and how is it related to ML?

Why is it important?

How the book is organized

Who is the audience?


Section 1: Machine Learning Chapter 1.1, introduction, machine learning, different types of machine learning 

Chapter 1.2, Machine Learning Technical Overview 

Chapter 1.3, Hands-On Machine Learning with Scikit Learn

Chapter 1.4,  Advanced Topics/flavors of Machine learning

Appendix: mathematical interlude




Section 2: Deep Learning 

Chapter 2.1, introduction (what is it, why is it important)

Chapter 2.2, Deep Learning Technical Overview 

Chapter 2.3, Hands-On Deep Learning with Keras

Chapter 2.4,  Advanced Topics/flavors of deep learning

Appendix: mathematical interlude




Section 3: Putting AI into Practice: Innovation Framework

Chapter 3.1: Diffusion and Dynamics of Innovation

Chapter 3.2: Managing an Innovation Portfolio

Erscheinungsdatum
Zusatzinfo 106 Illustrations, color; 85 Illustrations, black and white; 21 Tables, black and white
Verlagsort Boston
Sprache englisch
Maße 170 x 240 mm
Gewicht 402 g
Einbandart kartoniert
Themenwelt Sachbuch/Ratgeber Beruf / Finanzen / Recht / Wirtschaft Wirtschaft
Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Netzwerke
Informatik Theorie / Studium Algorithmen
Wirtschaft Betriebswirtschaft / Management Unternehmensführung / Management
Schlagworte Analytics • Big Data • Business Intelligence • Data Science • Design Patterns
ISBN-10 1-5015-1464-4 / 1501514644
ISBN-13 978-1-5015-1464-7 / 9781501514647
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Auswertung von Daten mit pandas, NumPy und IPython

von Wes McKinney

Buch | Softcover (2023)
O'Reilly (Verlag)
44,90
Datenanalyse für Künstliche Intelligenz

von Jürgen Cleve; Uwe Lämmel

Buch | Softcover (2024)
De Gruyter Oldenbourg (Verlag)
74,95