Inferential Network Analysis - Skyler J. Cranmer, Bruce A. Desmarais, Jason W. Morgan

Inferential Network Analysis

Buch | Hardcover
314 Seiten
2020
Cambridge University Press (Verlag)
978-1-107-15812-2 (ISBN)
124,65 inkl. MwSt
Introduces foundational statistical models for network data, augmenting theoretical discussion with applications across the social sciences implemented in the R language. An introductory text or reference for researchers, graduate students, and advanced undergraduate students across the social, mathematical, computational and physical sciences.
This unique textbook provides an introduction to statistical inference with network data. The authors present a self-contained derivation and mathematical formulation of methods, review examples, and real-world applications, as well as provide data and code in the R environment that can be customised. Inferential network analysis transcends fields, and examples from across the social sciences are discussed (from management to electoral politics), which can be adapted and applied to a panorama of research. From scholars to undergraduates, spanning the social, mathematical, computational and physical sciences, readers will be introduced to inferential network models and their extensions. The exponential random graph model and latent space network model are paid particular attention and, fundamentally, the reader is given the tools to independently conduct their own analyses.

Skyler J. Cranmer is the Carter Phillips and Sue Henry Professor of Political Science at The Ohio State University. Bruce A. Desmarais is the DeGrandis-McCourtney Early Career Professor in Political Science at Penn State University. Jason William Morgan is the Vice President for Behavioural Intelligence: Aware, and visiting scholar in Political Science at The Ohio State University.

Part I. Dependence and Interdependence: 1. Promises and Pitfalls of Inferential Network Analysis; 2. Detecting and Adjusting for Network Dependencies; Part II. The Family of Exponential Random Graph Models (ERGMs): 3. The Basic ERGM; 4. ERGM Specification; 5. Estimation and Degeneracy; 6. ERG Type Models for Longitudinally Observed Networks; 7. Valued-Edge ERGMs: The Generalized ERGM (GERGM); Part III. Latent Space Network Models: 8. The Basic Latent Space Model; 9. Identification, Estimation and Interpretation of the Latent Space Model; 10. Extending the Latent Space Model.

Erscheinungsdatum
Reihe/Serie Analytical Methods for Social Research
Verlagsort Cambridge
Sprache englisch
Maße 156 x 235 mm
Gewicht 580 g
Themenwelt Sozialwissenschaften Politik / Verwaltung
Sozialwissenschaften Soziologie Empirische Sozialforschung
Wirtschaft Betriebswirtschaft / Management Planung / Organisation
ISBN-10 1-107-15812-5 / 1107158125
ISBN-13 978-1-107-15812-2 / 9781107158122
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
ein Arbeitsbuch

von Aglaja Przyborski; Monika Wohlrab-Sahr

Buch | Softcover (2021)
De Gruyter Oldenbourg (Verlag)
34,95