Hydrogen Bonded Supramolecular Structures (eBook)

Zhan-Ting Li, Li-Zhu Wu (Herausgeber)

eBook Download: PDF
2015 | 2015
XI, 350 Seiten
Springer Berlin (Verlag)
978-3-662-45756-6 (ISBN)

Lese- und Medienproben

Hydrogen Bonded Supramolecular Structures -
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book covers the advances in the studies of hydrogen-bonding-driven supramolecular systems  made over the past decade. It is divided into four parts, with the first introducing the basics of hydrogen bonding and important hydrogen bonding patterns in solution as well as in the solid state. The second part covers molecular recognition and supramolecular structures driven by hydrogen bonding. The third part introduces the formation of hollow and giant macrocycles directed by hydrogen bonding, while the last part summarizes hydrogen bonded supramolecular polymers.

This book is designed to bring together in a single volume the many important aspects of hydrogen bonding supramolecular chemistry and will be a valuable resource for graduates and researchers working in supramolecular and related sciences.

Zhan-Ting Li, PhD, is a Professor of Organic Chemistry at the Department of Chemistry, Fudan University, China.

Li-Zhu Wu, PhD, is a Professor of Organic Chemistry at the Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, China.



Zhan-Ting Li was born in China in 1966. He received his BS in 1985 from Zhengzhou University and his PhD in organic fluorine chemistry in 1992 under the direction of Prof. Qing-Yun Chen at the Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences. Following postdoctoral research stays with Prof. Jan Becher at the University of South Denmark and Prof. Steven C. Zimmerman at the University of Illinois at Urbana-Champaign, he served as an Associate Professor and later Full Professor at the SIOC (1996-2010). In 2010, he switched to his present position as a Full Professor at the Department of Chemistry, Fudan University in Shanghai. Prof. Li has co-authored more than 190 peer-reviewed papers and 10 book chapters. His research interests include hydrogen bonding-mediated biomimetic structures and molecular recognition, and conjugated and self-assembled porous structures and functions.

Li-Zhu Wu received her BS from Lanzhou University (1990) and PhD from the Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (1995) under the direction of Prof. Chen-Ho Tung. She worked as a postdoctoral researcher with Prof. Chi-Ming Che at the University of Hong Kong (1997-1998) and has been a Full Professor at the TIPC since 1998. Prof. Wu has published over 200 research papers, reviews and book chapters. Her research focuses on photochemical conversion, including artificial photosynthesis, visible light-catalysis for efficient and large-scale organic synthesis, photoinduced electron transfer, and energy transfer and chemical reactions in supramolecular systems. She is currently a member of the Editorial Advisory Board of Inorganic Chemistry and Langmuir of ACS.

Zhan-Ting Li was born in China in 1966. He received his BS in 1985 from Zhengzhou University and his PhD in organic fluorine chemistry in 1992 under the direction of Prof. Qing-Yun Chen at the Shanghai Institute of Organic Chemistry (SIOC), Chinese Academy of Sciences. Following postdoctoral research stays with Prof. Jan Becher at the University of South Denmark and Prof. Steven C. Zimmerman at the University of Illinois at Urbana-Champaign, he served as an Associate Professor and later Full Professor at the SIOC (1996-2010). In 2010, he switched to his present position as a Full Professor at the Department of Chemistry, Fudan University in Shanghai. Prof. Li has co-authored more than 190 peer-reviewed papers and 10 book chapters. His research interests include hydrogen bonding-mediated biomimetic structures and molecular recognition, and conjugated and self-assembled porous structures and functions.Li-Zhu Wu received her BS from Lanzhou University (1990) and PhD from the Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (1995) under the direction of Prof. Chen-Ho Tung. She worked as a postdoctoral researcher with Prof. Chi-Ming Che at the University of Hong Kong (1997-1998) and has been a Full Professor at the TIPC since 1998. Prof. Wu has published over 200 research papers, reviews and book chapters. Her research focuses on photochemical conversion, including artificial photosynthesis, visible light-catalysis for efficient and large-scale organic synthesis, photoinduced electron transfer, and energy transfer and chemical reactions in supramolecular systems. She is currently a member of the Editorial Advisory Board of Inorganic Chemistry and Langmuir of ACS.

Preface 6
Contents 8
1 Hydrogen Bonding Motifs: New Progresses 13
Abstract 13
1.1 Hydrogen Bonding: The Basic Aspects 13
1.1.1 Definition 13
1.1.2 Hydrogen Bonding Donors and Acceptors 14
1.1.3 The Strength of the Hydrogen Bond 15
1.1.4 Hydrogen Bonding Formed by a Single Functional Group 17
1.2 Intramolecular Hydrogen Bonding 25
1.2.1 The O--H00B700B700B7X Hydrogen Bonding 25
1.2.2 The N--H00B700B700B7X Hydrogen Bonding 26
1.3 Intermolecular Hydrogen Bonding 36
1.3.1 Double Hydrogen Bonding 36
1.3.2 Triple Hydrogen Bonding 37
1.3.3 Quadruple Hydrogen Bonding 39
1.4 Conclusion 45
Acknowledgments 45
References 46
2 Understanding of Noncovalent Interactions Involving Organic Fluorine 49
Abstract 49
2.1 Introduction 49
2.1.1 Why Fluorine Is So Special? 51
2.2 Debate on Participation of Fluorine as a Hydrogen Bond Donor: Overview of the Weak X--H00B700B700B7F--C X = N, O, C Hydrogen Bond
2.3 Inputs from Other Interactions Involving Organic Fluorine 65
2.3.1 Insight into Halogen--Halogen Interactions Involving Fluorine 65
2.3.2 Insights into Halogen Bond Formation Involving Fluorine (C--F00B700B700B7X X = Halogen, N, O, S)
2.4 Conclusions 73
Acknowledgments 74
References 74
3 Hydrogen Bonding in Supramolecular Crystal Engineering 80
Abstract 80
3.1 Introduction 80
3.2 Crystal Engineering Strategies 82
3.2.1 Supramolecular Synthons and Retrosynthesis 82
3.2.2 Reticular Synthesis 83
3.3 Hydrogen Bonding 84
3.3.1 Definition and Scopes 84
3.3.2 Description of Hydrogen Bonding Motifs: The Graph Sets 85
3.3.3 Hydrogen Bonding Rules 86
3.4 Interpenetration 86
3.5 Hydrogen Bonding Structures 88
3.5.1 Discrete Hydrogen Bonding Capsules 88
3.5.1.1 Dimeric Capsules 89
3.5.1.2 Hexameric Capsules 91
3.5.1.3 A Quasi-truncated Octahedron 94
3.5.2 1D Infinite Hydrogen Bonding Nanotubes 95
3.5.2.1 Tubes Constructed from Flat Macrocycles 96
3.5.2.2 Tubes Constructed from Calixarenes 98
3.5.2.3 Tubes Constructed from Acyclic Molecules 99
3.5.3 2D and 3D Borromean Arrayed Organic Crystals 101
3.5.4 2D 2192 3D Parallel Polycatenated Structures 104
3.5.5 3D Interpenetrated dia and pcu Frameworks 106
3.5.6 Unusual Aggregation Phase of Water Molecules 107
3.6 Applications 110
3.6.1 Crystal Engineering of Solid State Photochemical Reactions 110
3.6.1.1 Self-complementary Reactants 110
3.6.1.2 Auxiliary Templates 111
3.6.1.3 Confined Environments of Cavities 113
3.6.2 Gas Adsorption and Separation 114
3.6.3 Crystal Engineering of Pharmaceutical Cocrystals 116
References 118
4 Hydrogen Bonding-Mediated Self-assembly of Aromatic Supramolecular Duplexes 125
Abstract 125
4.1 Introduction 125
4.2 Oligoamide-Based Molecular Duplex Strands 126
4.2.1 Oligoamide-Based Molecular Duplex Strands 126
4.2.2 Applications 128
4.3 Oligohydrazide-Based Molecular Duplex Strands 132
4.3.1 From Supramolecular Zipper to Quadruple Hydrogen-Bonded Heterodimer 133
4.3.2 Strict Self-complementary Oligohydrazide-Based Duplexes 134
4.3.3 Shuttle Movement 135
4.3.4 Mutual Responsive Low Molecular Mass Organic Gelators 137
4.3.5 Supramolecular Substitution 137
4.3.6 Amide-Urea-Based Molecular Duplexes 138
4.3.7 ``Hao'' Templated Molecular Duplex 141
4.4 ``Covalent Casting'' Strategy-Based Molecular Duplexes 141
4.5 Other Molecular Duplex Strands 143
4.6 Conclusions and Outlook 145
References 145
5 Hydrogen Bonding-Driven Anion Recognition 147
Abstract 147
5.1 Introduction 147
5.2 Amide-Based Anion Recognition 148
5.3 Urea-Based Anion Recognition 159
5.4 Pyrrole-Based Anion Recognition 174
5.5 CH Donor-Based Anion Recognition 185
5.6 OH-Based Anion Recognition 188
5.7 Conclusion 191
References 191
6 Formation of Hydrogen-Bonded Self-assembled Structures in Polar Solvents 196
Abstract 196
6.1 Introduction 196
6.2 Nucleobase Pairing and Nanostructure Formation in Water 197
6.3 Self-sorting/Orthogonal Self-assembly 202
6.4 Supramolecular Polymers 210
6.5 Supramolecular Gels in Aqueous and Polar Organic Media 216
6.6 Vesicles, Bilayers, Micelles Through H-Bonding 223
References 233
7 Hydrogen Bonded Capsules: Chemistry in Small Spaces 235
Abstract 235
7.1 Why Study Encapsulated Molecules? 235
7.2 The Capsules and Their Contents 236
7.2.1 The Tennis Ball 236
7.2.2 The Softball 238
7.2.3 A Cylindrical Capsule 239
7.2.4 The Volleyball 239
7.3 What's It Like Inside the Capsules? 240
7.4 How Do Molecules Get In and Out of the Capsules? 242
7.5 Amplified Intermolecular Forces 243
7.6 Arrangements in Encapsulation Space: New Stereochemistry 245
7.6.1 Social Isomers 245
7.6.2 Single Molecule Solvation 247
7.6.3 Isotope Effects 247
7.6.4 Constellations 248
7.6.5 Diastereomers 250
7.7 Chiral Spaces 251
7.8 Reactivity 253
7.9 Conclusion 254
Acknowledgments 254
References 255
8 Hydrogen Bonded Organic Nanotubes 257
Abstract 257
8.1 Introduction 257
8.2 Strategies for the Construction of Hydrogen Bonding-Driven Organic Nanotubes 258
8.3 Nanotubes from Hydrogen Bonding-Induced Helical Structures 259
8.4 Nanotubes from Tubular Molecules 262
8.5 Nanotubes from Hydrogen Bonded Rod-like Molecular Units 264
8.6 Nanotubes from Hydrogen Bonded Cyclic Molecules 266
8.6.1 Nanotubes from Hydrogen Bonded Cyclic Peptides 266
8.6.2 Nanotubes from Hydrogen Bonded Cyclic Ureas 269
8.7 Nanotubes from Hydrogen Bonded Wedge- or Sector-like Molecules 270
8.8 Conclusions and Outlooks 273
References 273
9 H-Bonding-Assisted One-Pot Macrocyclization for Rapid Construction of H-Bonded Macrocyclic Aromatic Foldamers 276
Abstract 276
9.1 Introduction 276
9.2 Concept Formulation 278
9.3 Aryl Amide Macrocycles 281
9.3.1 Non-fivefold Symmetric Aryl Amide Macrocycles 281
9.3.2 Fivefold Symmetric Aryl Amide Macrocycles 284
9.3.2.1 Evolution of Fivefold Symmetric Macrocycles 284
9.3.2.2 Fivefold Symmetric Macrocyclic Alkoxybenzene Pentamers 286
9.3.2.3 Fivefold Symmetric Macrocyclic Pyridone Pentamers 291
9.3.3 Highly Selective Production of Strained Aromatic Hexamers 295
9.3.4 Chemo- and Regio-Selective Demethylations 299
9.4 Macrocycles Containing Non-amide Linkages 300
9.5 Mechanism of One-Pot Macrocyclization 304
9.5.1 Variable Functionalizations Around the Pentameric Periphery 305
9.5.2 A Chain-Growth Mechanism Underlying the Formation of Aromatic Pentamers 309
9.5.3 A Non-chain Growth Mechanism Underlying the Formation of Strained Aromatic Hexamers and Heptamers 318
9.6 Conclusion 323
References 324
10 Hydrogen-Bonded Supramolecular Polymers 328
Abstract 328
10.1 Introduction 328
10.2 Hydrogen-Bonding Building Blocks 330
10.3 Hydrogen-Bonded Main-Chain Supramolecular Polymers Constructed by Low-Molecular-Weight Monomers 334
10.4 Hydrogen-Bonded Supramolecular Polymers Constructed by High-Molecular-Weight Conventional Polymers that Are Functionalized by Hydrogen-Bonded Motifs 341
10.4.1 Telechelic Supramolecular Polymers 341
10.4.2 ``Side-Chain'' Supramolecular Polymer Networks 344
10.5 Supramolecular Polymers Constructed by Orthogonal Hydrogen Bonding-Driven Self-assembly and Other Non-covalent Interactions 347
10.6 Conclusions 355
References 356

Erscheint lt. Verlag 12.1.2015
Reihe/Serie Lecture Notes in Chemistry
Lecture Notes in Chemistry
Zusatzinfo XI, 350 p. 356 illus., 272 illus. in color.
Verlagsort Berlin
Sprache englisch
Themenwelt Naturwissenschaften Chemie Organische Chemie
Technik Maschinenbau
Wirtschaft
Schlagworte Anion Recognition • Aromatic supramolecular duplexes • Hydrogen bonded capsules • Hydrogen bonding motifs • Macrocyclic aromatic foldamers • Organic nanotubes • Self-Assembly • Supramolecular crystal engineering • Supramolecular Polymers
ISBN-10 3-662-45756-3 / 3662457563
ISBN-13 978-3-662-45756-6 / 9783662457566
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 21,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Basiswissen der Chemie

von Charles E. Mortimer; Ulrich Müller

eBook Download (2019)
Georg Thieme Verlag KG
84,99