Allan J. Organ, PhD, Deng, ScD, FIMechE is known internationally for his work on Stirling engines. He is author of some 50 technical papers and four highly regarded texts on regenerative thermal cycles. The material and its treatment reflect experience accumulated over four-and-a-half decades of university research in the UK, Canada and South America.
Two centuries after the original invention, the Stirling engine is now a commercial reality as the core component of domestic CHP (combined heat and power) - a technology offering substantial savings in raw energy utilization relative to centralized power generation. The threat of climate change requires a net reduction in hydrocarbon consumption and in emissions of 'greenhouse' gases whilst sustaining economic growth. Development of technologies such as CHP addresses both these needs.Meeting the challenge involves addressing a range of issues: a long-standing mismatch between inherently favourable internal efficiency and wasteful external heating provision; a dearth of heat transfer and flow data appropriate to the task of first-principles design; the limited rpm capability when operating with air (and nitrogen) as working fluid. All of these matters are explored in depth in The air engine: Stirling cycle power for a sustainable future. The account includes previously unpublished insights into the personality and potential of two related regenerative prime movers - the pressure-wave and thermal-lag engines. - Contains previously unpublished insights into the pressure-wave and thermal-lag engines- Deals with a technology offering scope for saving energy and reducing harmful emissions without compromising economic growth- Identifies and discusses issues of design and their implementation
Notation
AC | cross-sectional area of compression cylinder | m2 |
Aff | free-flow area - cross-sectional area of flow passage, e.g. of regenerative annulus | m2 |
a | local isentropic acoustic speed √γRT or √RT as per context | m/s |
b | height of flow passage in direction of axis of spiral | m |
a, b | coefficients of equation - defined in text | (as required) |
c | local acoustic speed, isentropic√γRT or isothermal √RT as per context | m/s |
c | radial gap between concentric cylinders | m |
cp, cv | specific heat at constant pressure/volume | J/kgK |
cw | specific heat of material forming matrix of regenerator | J/kgK |
d | diameter | m |
D | internal diameter of inlet manifold | m |
D | total or substantial derivative ∂/∂t + u∂/∂x | s−1 |
d | diameter | m |
dw | diameter of individual wire | m |
F | friction term 2u¯2Cfsignu¯/rh | m/s2 |
f | cyclic frequency | s−1 |
g | mean mass velocity ρu based on free-flow area | kg/m2s |
G | mean mass velocity ρu based on frontal area | kg/m2s |
h | coefficient of convective heat transfer | W/m2K |
k | thermal conductivity | W/mK |
L | overall length of flow passage | m |
Lx | length of flow passage of specified exchanger | m |
Lo | piston-face to piston-face linear distance at crank angle datum | m |
Lr, Lreg | regenerator flow passage length | m |
Lref | reference length – equal to SW1/3 | m |
m | variable mass (of working fluid) | kg |
m' | mass rate, dm/dt | kg/s |
mw | mesh number – number of wires/m | m−1 |
P, Q | coefficients defined in text | (as required) |
p | (absolute) pressure | Pa |
pw | wetted perimeter | m |
qs | heat shuttled per cycle | J |
q' | heat rate per unit mass | W/kg |
QC | heat rejected (from compression space) per cycle | J |
QE | heat input (to expansion space) per cycle | J |
R | specific gas constant | J/kgK |
r | radial coordinate | m |
r | crank-pin offset (piston semi-stroke) | m |
rh | hydraulic radius – (wetted volume)/(wetted area) | m |
rpm | revolutions per minute | min−1 |
s | coordinate in peripheral direction = rϕ | m |
t | time | s |
t | thickness of separating plate, or radial thickness (e.g.) of displacer shell | m |
tc, td | radial thickness of wall of displacer/cylinder | m |
T | (absolute) temperature | K |
T | torque | Nm |
Ta | local temperature of air stream | K |
TC | temperature at ambient end of regenerator | K |
TE | temperature at expansion end of regenerator | K |
Tex | local temperature of exhaust stream | K |
Tg | local, instantaneous absolute temperature at point in fluid/enclosure element | K |
Tsu | Sutherland temperature | K |
Tw | local, instantaneous absolute temperature at point in matrix or at enclosure wall | K |
Twc | local, instantaneous temperature at given axial location on the cylinder | K |
Twd | local, instantaneous temperature at given axial location on the displacer | K |
u, v | local, instantaneous particle velocity in x and r coordinate directions respectively | m/s |
u | (in the context of the Method of Characteristics) one-dimensional (slab-flow) velocity at a point in physical and state planes | m/s |
u | mean mass velocity or bulk velocity, m'/ρAff | m/s |
u | (in the context of the Method of Characteristics) mean value of u between two adjacent points on integration mesh | m/s |
ud | instantaneous velocity of displacer | m/s |
v | variable volume | m3 |
V | variable volume | m3 |
VC | amplitude of volume variation in compression space | m3 |
VE | amplitude of volume variation in expansion space | m3 |
Vsw | swept volume | m3 |
w | width of flow passage measured in radial direction | m |
W | work per cycle | J |
x | linear distances in x coordinate direction | m |
ΔΤ | local, instantaneous difference T – Tw between temperature of gas and that of immediately adjacent solid element | K |
β | angular rotation of fluid filament within flow passage of regenerator gauze aperture | – |
δ* | displacement thickness (of boundary layer) | – |
ϕ | angular coordinate | – |
μ | coefficient of dynamic viscosity | Pa s |
ρ | density | kg/m3 |
ρw | density of parent material of regenerator matrix | kg/m3 |
θ | momentum thickness (of boundary layer | m |
ω | angular speed | s−1 |
Dimensionless variables (NB: dimensionless parameters listed below) |
f | pressure coefficient p/12ρu2 | – |
F | number of degrees of freedom (of planar mechanism) | – |
H | shape factor associated with boundary layer | – |
J | number of joints (in planar mechanism) | – |
L | number of binary, ternary, etc., links (forming planar mechanism | – |
m | momentum thickness variable | – |
Ma | Mach number... |
Erscheint lt. Verlag | 28.8.2007 |
---|---|
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Thermodynamik |
Technik ► Elektrotechnik / Energietechnik | |
Wirtschaft | |
ISBN-10 | 1-84569-360-4 / 1845693604 |
ISBN-13 | 978-1-84569-360-2 / 9781845693602 |
Haben Sie eine Frage zum Produkt? |
Größe: 7,8 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
Größe: 8,4 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich