Matrix-Analytic Methods in Stochastic Models (eBook)

eBook Download: PDF
2012 | 2013
XIV, 258 Seiten
Springer New York (Verlag)
978-1-4614-4909-6 (ISBN)

Lese- und Medienproben

Matrix-Analytic Methods in Stochastic Models -
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Matrix-analytic and related methods have become recognized as an important and fundamental approach for the mathematical analysis of general classes of complex stochastic models. Research in the area of matrix-analytic and related methods seeks to discover underlying probabilistic structures intrinsic in such stochastic models, develop numerical algorithms for computing functionals (e.g., performance measures) of the underlying stochastic processes, and apply these probabilistic structures and/or computational algorithms within a wide variety of fields. This volume presents recent research results on: the theory, algorithms and methodologies concerning matrix-analytic and related methods in stochastic models; and the application of matrix-analytic and related methods in various fields, which includes but is not limited to computer science and engineering, communication networks and telephony, electrical and industrial engineering, operations research, management science, financial and risk analysis, and bio-statistics. These research studies provide deep insights and understanding of the stochastic models of interest from a mathematics and/or applications perspective, as well as identify directions for future research.

Guy Latouche, Université Libre de Bruxelles, Belgium
Vaidyanathan Ramaswami , AT&T Labs Research, USA

Jay Sethuraman, Columbia University, USA

Karl Sigman, Columbia University, USA
Mark S. Squillante, IBM Thomas J. Watson Research Center, USA

David D. Yao, Columbia University, USA


Matrix-analytic and related methods have become recognized as an important and fundamental approach for the mathematical analysis of general classes of complex stochastic models. Research in the area of matrix-analytic and related methods seeks to discover underlying probabilistic structures intrinsic in such stochastic models, develop numerical algorithms for computing functionals (e.g., performance measures) of the underlying stochastic processes, and apply these probabilistic structures and/or computational algorithms within a wide variety of fields. This volume presents recent research results on: the theory, algorithms and methodologies concerning matrix-analytic and related methods in stochastic models; and the application of matrix-analytic and related methods in various fields, which includes but is not limited to computer science and engineering, communication networks and telephony, electrical and industrial engineering, operations research, management science, financial and risk analysis, and bio-statistics. These research studies provide deep insights and understanding of the stochastic models of interest from a mathematics and/or applications perspective, as well as identify directions for future research.

Guy Latouche, Université Libre de Bruxelles, BelgiumVaidyanathan Ramaswami , AT&T Labs Research, USAJay Sethuraman, Columbia University, USAKarl Sigman, Columbia University, USAMark S. Squillante, IBM Thomas J. Watson Research Center, USADavid D. Yao, Columbia University, USA

Factorization properties for a MAP-modulated fluid flow model under server vacation policies.- A compressed cyclic reduction for QBDs with low rank upper and lower transitions.- Bilateral matrix-exponential distribution.- AutoCAT: Automated Product-Form Solution of Stochastic Models.- Markovian trees subject to catastrophes: Would they survive forever?.- Majorization and Extremal PH-Distributions.- Acceptance-rejection methods for generating random variates from matrix exponential distributions and rational arrival processes.- Revisit to the tail asymptotics of the double QBD process: Refinement and complete solutions for the coordinate and diagonal directions.- Two-dimensional fluid queues with temporary assistance.- A Fluid Introduction To Brownian Motion & Stochastic Integration.- The impact of dampening demand variability in a production/inventory system with multiple retailers.

Erscheint lt. Verlag 4.12.2012
Reihe/Serie Springer Proceedings in Mathematics & Statistics
Springer Proceedings in Mathematics & Statistics
Zusatzinfo XIV, 258 p.
Verlagsort New York
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Wirtschaft Betriebswirtschaft / Management Planung / Organisation
Schlagworte Brownian motion • Matrix-Analytic Methods • Operations Research • Queueing Networks • stochastic models
ISBN-10 1-4614-4909-X / 146144909X
ISBN-13 978-1-4614-4909-6 / 9781461449096
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich