Dark Web (eBook)

Exploring and Data Mining the Dark Side of the Web

(Autor)

eBook Download: PDF
2011 | 2011
XXVI, 454 Seiten
Springer New York (Verlag)
978-1-4614-1557-2 (ISBN)

Lese- und Medienproben

Dark Web - Hsinchun Chen
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

The University of Arizona Artificial Intelligence Lab (AI Lab) Dark Web project is a long-term scientific research program that aims to study and understand the international terrorism (Jihadist) phenomena via a computational, data-centric approach. We aim to collect 'ALL' web content generated by international terrorist groups, including web sites, forums, chat rooms, blogs, social networking sites, videos, virtual world, etc. We have developed various multilingual data mining, text mining, and web mining techniques to perform link analysis, content analysis, web metrics (technical sophistication) analysis, sentiment analysis, authorship analysis, and video analysis in our research. The approaches and methods developed in this project contribute to advancing the field of Intelligence and Security Informatics (ISI). Such advances will help related stakeholders to perform terrorism research and facilitate international security and peace.

This monograph aims to provide an overview of the Dark Web landscape, suggest a systematic, computational approach to understanding the problems, and illustrate with selected techniques, methods, and case studies developed by the University of Arizona AI Lab Dark Web team members. This work aims to provide an interdisciplinary and understandable monograph about Dark Web research along three dimensions: methodological issues in Dark Web research; database and computational techniques to support information collection and data mining; and legal, social, privacy, and data confidentiality challenges and approaches.  It will bring useful knowledge to scientists, security professionals, counterterrorism experts, and policy makers. The monograph can also serve as a reference material or textbook in graduate level courses related to information security, information policy, information assurance, information systems, terrorism, and public policy.


The University of Arizona Artificial Intelligence Lab (AI Lab) Dark Web project is a long-term scientific research program that aims to study and understand the international terrorism (Jihadist) phenomena via a computational, data-centric approach. We aim to collect "e;ALL"e; web content generated by international terrorist groups, including web sites, forums, chat rooms, blogs, social networking sites, videos, virtual world, etc. We have developed various multilingual data mining, text mining, and web mining techniques to perform link analysis, content analysis, web metrics (technical sophistication) analysis, sentiment analysis, authorship analysis, and video analysis in our research. The approaches and methods developed in this project contribute to advancing the field of Intelligence and Security Informatics (ISI). Such advances will help related stakeholders to perform terrorism research and facilitate international security and peace. This monograph aims to provide an overview of the Dark Web landscape, suggest a systematic, computational approach to understanding the problems, and illustrate with selected techniques, methods, and case studies developed by the University of Arizona AI Lab Dark Web team members. This work aims to provide an interdisciplinary and understandable monograph about Dark Web research along three dimensions: methodological issues in Dark Web research; database and computational techniques to support information collection and data mining; and legal, social, privacy, and data confidentiality challenges and approaches. It will bring useful knowledge to scientists, security professionals, counterterrorism experts, and policy makers. The monograph can also serve as a reference material or textbook in graduate level courses related to information security, information policy, information assurance, information systems, terrorism, and public policy.

Chapter 1. Dark Web Research Overview.- Chapter 2. Intelligence and Security Informatics (ISI): Research Framework.- Chapter 3. Terrorism Informatics.- Chapter 4. Forum Spidering.- Chapter 5. Link and Content Analysis.- Chapter 6. Dark Network Analysis.- Chapter 7. Interactional Coherence Analysis.- Chapter 8. Dark Web Attribute System.- Chapter 9. Authorship Analysis.- Chapter 10. Sentiment Analysis.- Chapter 11. Affect Analysis.- Chapter 12. Cybergate Visualization.- Chapter 13. Dark Web Forum Portal.- Chapter 14. Jihadi Video Analysis.- Chapter 15. Extremist Youtube Videos.- Chapter 16. Improvised Explosive Devices (IED) on Dark Web.- Chapter 17. Weapons of Mass Destruction (WMD) on Dark Web.- Chapter 18. Bioterrorism Knowledge Mapping.- Chapter 19. Women's Forums on the Dark Web.- Chapter 20. U.S. Domestic Extremist Groups.- Chapter 21. International Falun Gong Movement on the Web.- Chapter 22. Botnets and Cyber Criminals.

Erscheint lt. Verlag 17.12.2011
Reihe/Serie Integrated Series in Information Systems
Integrated Series in Information Systems
Zusatzinfo XXVI, 454 p.
Verlagsort New York
Sprache englisch
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Wirtschaft Betriebswirtschaft / Management Planung / Organisation
Wirtschaft Betriebswirtschaft / Management Wirtschaftsinformatik
Schlagworte dark Web • Data Mining • Informatics • security informatics • Web mining
ISBN-10 1-4614-1557-8 / 1461415578
ISBN-13 978-1-4614-1557-2 / 9781461415572
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 10,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenschutz und Sicherheit in Daten- und KI-Projekten

von Katharine Jarmul

eBook Download (2024)
O'Reilly Verlag
24,99