Optimization Theory and Methods (eBook)

Nonlinear Programming
eBook Download: PDF
2006 | 2006
XII, 687 Seiten
Springer US (Verlag)
978-0-387-24976-6 (ISBN)

Lese- und Medienproben

Optimization Theory and Methods - Wenyu Sun, Ya-xiang Yuan
Systemvoraussetzungen
181,89 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Optimization Theory and Methods can be used as a textbook for an optimization course for graduates and senior undergraduates. It is the result of the author's teaching and research over the past decade. It describes optimization theory and several powerful methods. For most methods, the book discusses an idea's motivation, studies the derivation, establishes the global and local convergence, describes algorithmic steps, and discusses the numerical performance.

Preface

1 Introduction
1.1 Introduction
1.2 Mathematics Foundations
1.2.1 Norm
1.2.2 Inverse and Generalized Inverse of a Matrix
1.2.3 Properties of Eigenvalues
1.2.4 Rank-One Update
1.2.5 Function and Differential
1.3 Convex Sets and Convex Functions
1.3.1 Convex Sets
1.3.2 Convex Functions
1.3.3 Separation and Support of Convex Sets
1.4 Optimality Conditions for Unconstrained Case
1.5 Structure of Optimization Methods
Exercises

2 Line Search
2.1 Introduction
2.2 Convergence Theory for Exact Line Search
2.3 Section Methods
2.3.1 The Golden Section Method
2.3.2 The Fibonacci Method
2.4 Interpolation Method
2.4.1 Quadratic Interpolation Methods
2.4.2 Cubic Interpolation Method
2.5 Inexact Line Search Techniques
2.5.1 Armijo and Goldstein Rule
2.5.2 Wolfe-Powell Rule
2.5.3 Goldstein Algorithm and Wolfe-Powell Algorithm
2.5.4 Backtracking Line Search
2.5.5 Convergence Theorems of Inexact Line Search
Exercises

3 Newton’s Methods
3.1 The Steepest Descent Method
3.1.1 The Steepest Descent Method
3.1.2 Convergence of the Steepest Descent Method
3.1.3 Barzilai and Borwein Gradient Method
3.1.4 Appendix: Kantorovich Inequality
3.2 Newton’s Method
3.3 Modified Newton’s Method
3.4 Finite-Difference Newton’s Method
3.5 Negative Curvature Direction Method
3.5.1 Gill-Murray Stable Newton’s Method
3.5.2 Fiacco-McCormick Method
3.5.3 Fletcher-Freeman Method
3.5.4 Second-Order Step Rules
3.6 Inexact Newton’s Method
Exercises

4 Conjugate Gradient Method
4.1 Conjugate Direction Methods
4.2 Conjugate Gradient Method
4.2.1 Conjugate Gradient Method
4.2.2 Beale’s Three-Term Conjugate Gradient Method
4.2.3 Preconditioned Conjugate Gradient Method
4.3 Convergence of Conjugate Gradient Methods
4.3.1 Global Convergence of Conjugate Gradient Methods
4.3.2 Convergence Rate of Conjugate Gradient Methods
Exercises

5 Quasi-Newton Methods
5.1 Quasi-Newton Methods
5.1.1 Quasi-Newton Equation
5.1.2 Symmetric Rank-One (SR1) Update
5.1.3 DFP Update
5.1.4 BFGS Update and PSB Update
5.1.5 The Least Change Secant Update
5.2 The Broyden Class
5.3 Global Convergence of Quasi-Newton Methods
5.3.1 Global Convergence under Exact Line Search
5.3.2 Global Convergence under Inexact Line Search
5.4 Local Convergence of Quasi-Newton Methods
5.4.1 Superlinear Convergence of General Quasi-Newton Methods
5.4.2 Linear Convergence of General Quasi-Newton Methods
5.4.3 Local Convergence of Broyden’s Rank-One Update
5.4.4 Local and Linear Convergence of DFP Method
5.4.5 Superlinear Convergence of BFGS Method
5.4.6 Superlinear Convergence of DFP Method
5.4.7 Local Convergence of Broyden’s Class Methods
5.5 Self-Scaling Variable Metric (SSVM) Methods
5.5.1 Motivation to SSVM Method
5.5.2 Self-Scaling Variable Metric (SSVM) Method
5.5.3 Choices of the Scaling Factor
5.6 Sparse Quasi-Newton Methods
5.7 Limited Memory BFGS Method
Exercises

6 Trust-Region and Conic Model Methods
6.1 Trust-Region Methods
6.1.1 Trust-Region Methods
6.1.2 Convergence of Trust-Region Methods
6.1.3 Solving A Trust-Region Subproblem
6.2 Conic Model and Collinear Scaling Algorithm
6.2.1 Conic Model
6.2.2 Generalized Quasi-Newton Equation
6.2.3 Updates that Preserve Past Information
6.2.4 Collinear Scaling BFGS Algorithm
6.3 Tensor Methods
6.3.1 Tensor Method for Nonlinear Equations
6.3.2 Tensor Methods for Unconstrained Optimization
Exercises

Erscheint lt. Verlag 6.8.2006
Reihe/Serie Springer Optimization and Its Applications
Springer Optimization and Its Applications
Zusatzinfo XII, 688 p.
Verlagsort New York
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Finanz- / Wirtschaftsmathematik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Technik
Wirtschaft Betriebswirtschaft / Management Planung / Organisation
Schlagworte algorithms • Computer-Aided Design (CAD) • Constrained optimization • linear optimization • Mathematical Programming • Model • Nonlinear Optimization • Nonsmooth Optimization • Numerical optimization • Optimization • programming • quadratic programming • Quasi-Newton method • Unconstrained optimization
ISBN-10 0-387-24976-1 / 0387249761
ISBN-13 978-0-387-24976-6 / 9780387249766
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 4,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich