Phase Transitions in Polymers: The Role of Metastable States -  Stephen Z.D. Cheng

Phase Transitions in Polymers: The Role of Metastable States (eBook)

eBook Download: PDF
2008 | 1. Auflage
324 Seiten
Elsevier Science (Verlag)
978-0-08-055820-2 (ISBN)
Systemvoraussetzungen
149,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
A classical metastable state possesses a local free energy minimum at infinite sizes, but not a global one. This concept is phase size independent. We have studied a number of experimental results and proposed a new concept that there exists a wide range of metastable states in polymers on different length scales where their metastability is critically determined by the phase size and dimensionality. Metastable states are also observed in phase transformations that are kinetically impeded on the pathway to thermodynamic equilibrium. This was illustrated in structural and morphological investigations of crystallization and mesophase transitions, liquid-liquid phase separation, vitrification and gel formation, as well as combinations of these transformation processes. The phase behaviours in polymers are thus dominated by interlinks of metastable states on different length scales. This concept successfully explains many experimental observations and provides a new way to connect different aspects of polymer physics.
* Written by a leading scholar and industry expert
* Presents new and cutting edge material encouraging innovation and future research
* Connects hot topics and leading research in one concise volume
A classical metastable state possesses a local free energy minimum at infinite sizes, but not a global one. This concept is phase size independent. We have studied a number of experimental results and proposed a new concept that there exists a wide range of metastable states in polymers on different length scales where their metastability is critically determined by the phase size and dimensionality. Metastable states are also observed in phase transformations that are kinetically impeded on the pathway to thermodynamic equilibrium. This was illustrated in structural and morphological investigations of crystallization and mesophase transitions, liquid-liquid phase separation, vitrification and gel formation, as well as combinations of these transformation processes. The phase behaviours in polymers are thus dominated by interlinks of metastable states on different length scales. This concept successfully explains many experimental observations and provides a new way to connect different aspects of polymer physics.* Written by a leading scholar and industry expert* Presents new and cutting edge material encouraging innovation and future research* Connects hot topics and leading research in one concise volume

Cover 1
Copyright Page 5
TOC$Contents 6
Foreword 10
Preface and Acknowledgments 14
CH$Chapter 1: Introduction 18
1. Phases in Single-Component Systems 18
1.1. Macroscopic description of phases 18
1.2. Microscopic description of phases 20
1.3. Connection between microscopic descriptions and macroscopic properties 24
2. Phase Transitions in Single-Component Systems 27
2.1. Definitions of phase transitions 27
2.2. Phase equilibrium and stability 29
References and Further Reading 31
CH$Chapter 2: Thermodynamics and Kinetics of Phase Transitions 34
1. Thermodynamics of Phase Transitions in Single Component Systems 35
1.1. An example of liquid-gas transitions: van der Waals gas 35
1.2. General descriptions of liquid-gas and crystalline solid-liquid transitions 37
1.3. Crystalline solid-solid transitions 41
1.4. Transitions involving mesophases 42
2. Kinetic Aspects of Phase Transitions in Single Component Systems 48
2.1. Crystallization 48
2.2. Crystal melting kinetics 52
2.3. Transition kinetics involving mesophases 54
3. Phases and Phase Transitions in Multiple Component Systems 56
3.1. Gibbs phase rule 56
3.2. General thermodynamics of binary mixing 57
3.3. Liquid-liquid phase separation in binary mixtures 59
3.4. Kinetics of liquid-liquid phase separation in binary mixtures 62
3.5. Crystalline solid-liquid transitions in binary mixtures 68
3.6. Mesophase-liquid transitions in binary mixtures 69
References and Further Reading 73
CH$Chapter 3: Concepts of Metastable States 78
1. Ostwald's Stage Rule and Definition of a Metastable State 78
2. Examples of Metastable States in Phase Transitions 80
2.1. Metastable states in liquid-gas transitions 80
2.2. Metastable states in crystalline solid-liquid transitions 82
3. Appearance of Metastable States Controlled by Competing Kinetics 84
4. What are the Limitations of the Current Understanding of Metastable States? 88
5. Concept of Metastability 90
References and Further Reading 92
CH$Chapter 4: Metastable States in Phase Transitions of Polymers 94
1. Supercooled Liquids and Crystallization 95
1.1. Supercooled liquids 95
1.2. Comments on polymer crystallization theories 98
1.3. Primary nucleation process in polymer crystallization 108
1.4. Structure of the interfacial liquid near the crystal growth front 111
1.5. What is the nucleation barrier? 113
2. Superheated Crystals and Crystal Melting 123
2.1. Superheated crystals 123
2.2. Irreversible polymer crystal melting 127
2.3. Determining crystal metastability 128
2.4. Ensuring constant metastability during heating 134
2.5. Polymer crystal melting at elevated pressures 137
2.6. Polymer crystal melting kinetics 139
3. Metastable States in Phase-Separated Polymer Blends and Copolymers 141
3.1. Metastable states in phase-separated polymer blends 141
3.2. Kinetics of liquid-liquid phase separation in polymer blends 144
3.3. Metastable states in phase-separated block copolymers 147
3.4. Polymer crystallization in nano-confined environments using diblock copolymers as templates 153
References and Further Reading 159
CH$Chapter 5: Metastable States Observed Due to Phase Transformation Kinetics in Polymers 174
1. Appearance of Metastable States Based on Their Crystal Nucleation Barrier 175
1.1. Crystal growth rates along different growth planes 175
1.2. Initial transient state in polymer crystallization 185
1.3. Nucleation and growth rates affected by chain conformation 190
2. Polymorphs and Competing Formation Kinetics 193
2.1. Phase stability changes in polymorphs at atmospheric pressure 193
2.2. Phase stability changes in polymorphs at high pressures and temperatures 203
2.3. External field-induced polymorphs 210
3. Monotropic Phase Transitions in Polymers 212
3.1. Crystallization kinetics enhanced by a preordered mesophase 212
3.2. Change of phase transition sequence due to existence of a preordered state 216
4. Surface- and Interface-Induced Metastable Phases 220
4.1. Surface-induced metastable polymorphs 220
4.2. Metastable states introduced by unbalanced surface stresses caused by chain folding 230
References and Further Reading 238
CH$Chapter 6: Interdependence of Metastable States on Different Length Scales 254
1. Combining Phase Size Effects with Polymorphs 255
1.1. Phase-stability changes in polymorphs based on phase sizes 255
1.2. Examples of phase inversion by crossing over the phase-stability boundaries 262
1.3. Examples of phase inversion without crossing the phase-stability boundaries 273
2. Liquid-Liquid Phase Separation Coupled with Vitrification 277
3. Liquid-Liquid Phase Separation Coupled with Crystallization 283
3.1. Liquid-liquid phase separation intervened by crystallization in solution 283
3.2. Sequential liquid-liquid phase separation and crystallization in solution 287
3.3. Liquid-liquid phase separation intersected by crystallization in polymer blends 291
3.4. Sequential liquid-liquid phase separation and crystallization in polymer blends 298
4. Liquid-Liquid Phase Separation Associated with Gelation and Crystallization 303
References and Further Reading 310
CH$Chapter 7: Outlook: A Personal View 316
IDX$Index 320

Erscheint lt. Verlag 10.9.2008
Sprache englisch
Themenwelt Naturwissenschaften Chemie Analytische Chemie
Naturwissenschaften Chemie Organische Chemie
Naturwissenschaften Chemie Physikalische Chemie
Naturwissenschaften Physik / Astronomie Festkörperphysik
Naturwissenschaften Physik / Astronomie Thermodynamik
Technik Maschinenbau
Wirtschaft
ISBN-10 0-08-055820-8 / 0080558208
ISBN-13 978-0-08-055820-2 / 9780080558202
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 10,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Daten, Formeln, Übungsaufgaben

von Friedrich W. Küster; Alfred Thiel; Andreas Seubert

eBook Download (2023)
De Gruyter (Verlag)
49,95