Handbook of Econometrics -

Handbook of Econometrics (eBook)

eBook Download: PDF | EPUB
2001 | 1. Auflage
740 Seiten
Elsevier Science (Verlag)
978-0-08-052479-5 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
118,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The Handbook is a definitive reference source and teaching aid for
econometricians. It examines models, estimation theory, data analysis and field
applications in econometrics. Comprehensive surveys, written by experts, discuss recent developments at a level suitable for professional use by economists, econometricians, statisticians, and in advanced graduate econometrics courses. For more information on the Handbooks in Economics series, please see our home page on http://www.elsevier.nl/locate/hes
The Handbook is a definitive reference source and teaching aid for econometricians. It examines models, estimation theory, data analysis and field applications in econometrics. Comprehensive surveys, written by experts, discuss recent developments at a level suitable for professional use by economists, econometricians, statisticians, and in advanced graduate econometrics courses. For more information on the Handbooks in Economics series, please see our home page on http://www.elsevier.nl/locate/hes

Cover 1
Copyright Page 5
CONTENTS 16
Introduction to the Series 6
Contents of the Handbook 8
Preface to the Handbook 14
References 15
Part 11: NEW DEVELOPMENTS IN THEORETICAL ECONOMETRICS 24
Chapter 52. The Bootstrap 26
Abstract 27
Keywords 27
1. Introduction 28
2. The bootstrap sampling procedure and its consistency 30
3. Asymptotic refinements 39
4. Extensions 55
5. Monte Carlo experiments 80
6. Conclusions 87
Acknowledgements 88
Appendix A. Informal derivation of Equation (3.27) 88
References 90
Chapter 53. Panel Data Models: Some Recent Developments 96
Abstract 98
Keywords 98
1. Introduction 99
2. Linear models with predetermined variables: identification 100
3. Linear models with predetermined variables: estimation 122
4. Nonlinear panel data models 132
5. Conditional maximum likelihood estimation 134
6. Discrete choice models with fixedŽ effects 137
7. Tobit-type models with fixedŽ effects 139
8. Models with lagged dependent variables 149
9. RandomŽ effects models 154
10. Concluding remarks 157
References 157
Chapter 54. Interactions-Based Models 164
Abstract 166
Keywords 166
1. Introduction 167
2. Binary choice with social interactions 172
3. Identification: basic issues 185
4. Further topics in identification 202
5. Sampling properties 215
6. Statistical analysis with grouped data 219
7. Evidence 222
8. Summary and conclusions 229
Appendix A 230
References 238
Chapter 55. Duration Models: Specification, Identification and Multiple Durations 248
Abstract 250
Keywords 250
1. Introduction 251
2. Basic concepts and notation 254
3. Some structural models of durations 256
4. The Mixed Proportional Hazard model 261
5. Identification of the MPH model with single-spell data 272
6. The MPH model with multi-spell data 293
7. An informal classification of reduced-form multiple-duration models 298
8. The Multivariate Mixed Proportional Hazard model 304
9. Causal duration effects and selectivity 314
10. Conclusions and recommendations 316
References 320
Part 12: COMPUTATIONAL METHODS IN ECONOMETRICS 328
Chapter 56. Computationally Intensive Methods for Integration in Econometrics 330
Abstract 332
Keywords 332
1. Introduction 333
2. Monte Carlo methods of integral approximation 335
3. Approximate solution of discrete dynamic optimization problems 348
4. Classical simulation estimation of the multinomial probit model 361
5. Univariate latent linear models 373
6. Multivariate latent linear models 385
7. Bayesian inference for a dynamic discrete choice model 405
Appendix A. The full univariate latent linear model 415
Appendix B. The full multivariate latent linear model 422
References 431
Chapter 57. Markov Chain Monte Carlo Methods: Computation and Inference 436
Abstract 437
Keywords 437
1. Introduction 438
2. Classical sampling methods 440
3. Markov chains 443
4. Metropolis–Hastings algorithm 447
5. The Gibbs sampling algorithm 456
6. Sampler performance and diagnostics 462
7. Strategies for improving mixing 463
8. MCMC algorithms in Bayesian estimation 466
9. Sampling the predictive density 490
10. MCMC methods in model choice problems 493
11. MCMC methods in optimization problems 506
12. Concluding remarks 508
References 509
Part 13: APPLIED ECONOMETRICS 518
Chapter 58. Calibration 520
Abstract 521
Keywords 521
1. Introduction 522
2. Calibration: its meaning and some early examples 523
3. The debate about calibration 528
4. Making calibration more concrete 534
5. Best practice in calibration 551
6. New directions in calibration 561
7. Conclusion 565
References 566
Chapter 59. Measurement Error in Survey Data 572
Abstract 574
Keywords 574
1. Introduction 575
2. The impact of measurement error on parameter estimates 577
3. Correcting for measurement error 595
4. Approaches to the assessment of measurement error 607
5. Measurement error and memory: findings from household-based surveys 610
6. Evidence on measurement error in survey reports of labor-related phenomena 615
7. Conclusions 697
References 700
Author Index 712
Subject Index 730

Chapter 52

The Bootstrap


Joel L. Horowitz    Department of Economics, Northwestern University, Evanston, IL, USA

Abstract


The bootstrap is a method for estimating the distribution of an estimator or test statistic by resampling one’s data or a model estimated from the data. Under conditions that hold in a wide variety of econometric applications, the bootstrap provides approximations to distributions of statistics, coverage probabilities of confidence intervals, and rejection probabilities of hypothesis tests that are more accurate than the approximations of first-order asymptotic distribution theory. The reductions in the differences between true and nominal coverage or rejection probabilities can be very large. The bootstrap is a practical technique that is ready for use in applications. This chapter explains and illustrates the usefulness and limitations of the bootstrap in contexts of interest in econometrics. The chapter outlines the theory of the bootstrap, provides numerical illustrations of its performance, and gives simple instructions on how to implement the bootstrap in applications. The presentation is informal and expository. Its aim is to provide an intuitive understanding of how the bootstrap works and a feeling for its practical value in econometrics.

Keywords

JEL classification:

C12

C13

C15

1 Introduction


The bootstrap is a method for estimating the distribution of an estimator or test statistic by resampling one’s data. It amounts to treating the data as if they were the population for the purpose of evaluating the distribution of interest. Under mild regularity conditions, the bootstrap yields an approximation to the distribution of an estimator or test statistic that is at least as accurate as the approximation obtained from first-order asymptotic theory. Thus, the bootstrap provides a way to substitute computation for mathematical analysis if calculating the asymptotic distribution of an estimator or statistic is difficult. The statistic developed by Härdle et al. (1991) for testing positive-definiteness of income-effect matrices, the conditional Kolmogorov test of Andrews (1997), Stute’s (1997) specification test for parametric regression models, and certain functions of time-series data [Blanchard and Quah (1989), Runkle (1987), West (1990)] are examples in which evaluating the asymptotic distribution is difficult and bootstrapping has been used as an alternative.

In fact, the bootstrap is often more accurate in finite samples than first-order asymptotic approximations but does not entail the algebraic complexity of higherorder expansions. Thus, it can provide a practical method for improving upon firstorder approximations. Such improvements are called asymptotic refinements. One use of the bootstrap’s ability to provide asymptotic refinements is bias reduction. It is not unusual for an asymptotically unbiased estimator to have a large finite-sample bias. This bias may cause the estimator’s finite-sample mean square error to greatly exceed the mean-square error implied by its asymptotic distribution. The bootstrap can be used to reduce the estimator’s finite-sample bias and, thereby, its finite-sample mean-square error.

The bootstrap’s ability to provide asymptotic refinements is also important in hypothesis testing. First-order asymptotic theory often gives poor approximations to the distributions of test statistics with the sample sizes available in applications. As a result, the nominal probability that a test based on an asymptotic critical value rejects a true null hypothesis can be very different from the true rejection probability (RP)1 The information matrix test of White (1982) is a well-known example of a test in which large finite-sample errors in the RP can occur when asymptotic critical values are used [Horowitz (1994), Kennan and Neumann (1988), Orme (1990), Taylor (1987)]. Other illustrations are given later in this chapter. The bootstrap often provides a tractable way to reduce or eliminate finite-sample errors in the RP’s of statistical tests.

The problem of obtaining critical values for test statistics is closely related to that of obtaining confidence intervals. Accordingly, the bootstrap can also be used to obtain confidence intervals with reduced errors in coverage probabilities. That is, the difference between the true and nominal coverage probabilities is often lower when the bootstrap is used than when first-order asymptotic approximations are used to obtain a confidence interval.

The bootstrap has been the object of much research in statistics since its introduction by Efron (1979). The results of this research are synthesized in the books by Beran and Ducharme (1991), Davison and Hinkley (1997), Efron and Tibshirani (1993), Hall (1992a), Mammen (1992), and Shao and Tu (1995). Hall (1994), Horowitz (1997), Jeong and Maddala (1993) and Vinod (1993) provide reviews with an econometric orientation. This chapter covers a broader range of topics than do these reviews. Topics that are treated here but only briefly or not at all in the reviews include bootstrap consistency, subsampling, bias reduction, time-series models with unit roots, semiparametric and nonparametric models, and certain types of non-smooth models. Some of these topics are not treated in existing books on the bootstrap.

The purpose of this chapter is to explain and illustrate the usefulness and limitations of the bootstrap in contexts of interest in econometrics. Particular emphasis is given to the bootstrap’s ability to improve upon first-order asymptotic approximations. The presentation is informal and expository. Its aim is to provide an intuitive understanding of how the bootstrap works and a feeling for its practical value in econometrics. The discussion in this chapter does not provide a mathematically detailed or rigorous treatment of the theory of the bootstrap. Such treatments are available in the books by Beran and Ducharme (1991) and Hall (1992a) as well as in journal articles that are cited later in this chapter.

It should be borne in mind throughout this chapter that although the bootstrap often provides smaller biases, smaller errors in the RP’s of tests, and smaller errors in the coverage probabilities of confidence intervals than does first-order asymptotic theory, bootstrap bias estimates, RP’s, and confidence intervals are, nonetheless, approximations and not exact. Although the accuracy of bootstrap approximations is often very high, this is not always the case. Even when theory indicates that it provides asymptotic refinements, the bootstrap’s numerical performance may be poor. In some cases, the numerical accuracy of bootstrap approximations may be even worse than the accuracy of first-order asymptotic approximations. This is particularly likely to happen with estimators whose asymptotic covariance matrices are “nearly singular,” as in instrumental-variables estimation with poorly correlated instruments and regressors. Thus, the bootstrap should not be used blindly or uncritically.

However, in the many cases where the bootstrap works well, it essentially removes getting the RP or coverage probability right as a factor in selecting a test statistic or method for constructing a confidence interval. In addition, the bootstrap can provide dramatic reductions in the finite-sample biases and mean-square errors of certain estimators.

The remainder of this chapter is divided into five sections. Section 2 explains the bootstrap sampling procedure and gives conditions under which the bootstrap distribution of a statistic is a consistent estimator of the statistic’s asymptotic distribution. Section 3 explains when and why the bootstrap provides asymptotic refinements. This section concentrates on data that are simple random samples from a distribution and statistics that are either smooth functions of sample moments or can be approximated with asymptotically negligible error by such functions (the smooth function model). Section 4 extends the results of Section 3 to dependent data and statistics that do not satisfy the assumptions of the smooth function model. Section 5 presents Monte Carlo evidence on the numerical performance of the bootstrap in a variety of settings that are relevant to econometrics, and Section 6 presents concluding comments.

For applications-oriented readers who are in a hurry, the following list of bootstrap dos and don’ts summarizes the main practical conclusions of this chapter.

Bootstrap Dos and Don’ts

(1) Do use the bootstrap to estimate the probability distribution of an asymptotically pivotal statistic or the critical value of a test based on an asymptotically pivotal statistic whenever such a statistic is available. (Asymptotically pivotal statistics are defined in Section 2. Sections 3.23.5 explain why the bootstrap should be applied to asymptotically pivotal statistics.)

(2) Don’t use the bootstrap to estimate the probability distribution of a nonasymptotically-pivotal statistic such as a regression slope coefficient or standard error if an asymptotically pivotal statistic is available.

(3) Do...

Erscheint lt. Verlag 22.11.2001
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Statistik
Technik
Wirtschaft Volkswirtschaftslehre Ökonometrie
ISBN-10 0-08-052479-6 / 0080524796
ISBN-13 978-0-08-052479-5 / 9780080524795
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 86,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 17,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Jim Sizemore; John Paul Mueller

eBook Download (2024)
Wiley-VCH GmbH (Verlag)
24,99