Fuel Cells Compendium -

Fuel Cells Compendium (eBook)

eBook Download: PDF
2005 | 1. Auflage
632 Seiten
Elsevier Science (Verlag)
978-0-08-045725-3 (ISBN)
Systemvoraussetzungen
147,68 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Fuel cells continue to be heralded as the energy source of the future, and every year an immense amount of research time and money is devoted making them more economically and technically viable.

This compendium brings together an up-to-date review of the literature and commentary surrounding fuel cells research. Covering all relevant disciplines from science to engineering to policy, it is an exceptional resource for anyone with an invested interest in the field.

. Provides an comprehensive selection of reviews and other industrially focused material on fuel cells research
. Broadly scoped to encompass many disciplines, from science to engineering, to applications and policy.
. In-depth coverage of the two major types of fuel cells: Ceramic (Solid Oxide) and Polymers (Proton Exchange Membranes)
Fuel cells continue to be heralded as the energy source of the future, and every year an immense amount of research time and money is devoted making them more economically and technically viable. Fuel Cells Compendium brings together an up-to-date review of the literature and commentary surrounding fuel cells research. Covering all relevant disciplines from science to engineering to policy, it is an exceptional resource for anyone with an invested interest in the field. - Provides an comprehensive selection of reviews and other industrially focused material on fuel cells research- Broadly scoped to encompass many disciplines, from science to engineering, to applications and policy- In-depth coverage of the two major types of fuel cells: Ceramic (Solid Oxide) and Polymers (Proton Exchange Membranes)

Cover 1
Contents 6
Foreword 10
Contributors 12
1 US distributed generation fuel cell program 18
Abstract 18
1. INTRODUCTION 18
2. SOLID OXIDE FUEL CELLS (SOFCs) 19
2.1. Siemens Westinghouse Power Corporation’s Tubular SOFC Program 19
2.2. Solid State Energy Conversion Alliance (SECA) SOFC Programs 24
3. MOLTEN CARBONATE FUEL CELLS (MCFCs) 25
4. FUTUREGEN 26
5. SUMMARY 27
ACKNOWLEDGEMENTS 27
REFERENCES 28
2 From curiosity to "power to change the world®" 30
Abstract 30
1. INTRODUCTION 31
2. THE TECHNOLOGY DEVELOPMENT PATH TO THE PEMFC (1838–1960s) 31
3. PEMFC DEVELOPMENT FROM THE 1970s INTO THE NEW MILLENNIUM 33
4. KEY BUSINESS AND SUPPLIER ALLIANCES IN PEMFCs FOR THE 21st CENTURY 37
5. WHY THE WORLD NEEDS PEMFC PRODUCTS 39
6. THE OUTLOOK FOR THE FUTURE 39
ACKNOWLEDGEMENTS 40
REFERENCES 40
3 A review of catalytic issues and process conditions for renewable hydrogen and alkanes by aqueous-phase reforming of oxygenated hydrocarbons over supported metal catalysts 46
Abstract 46
1. INTRODUCTION 47
2. AQUEOUS-PHASE REFORMING 48
2.1. Basis for aqueous-phase reforming process 48
2.1.1. Thermodynamic considerations 48
2.1.2. Kinetic considerations 50
2.2. Factors controlling selectivity for aqueous-phase reforming 52
2.2.1. Nature of the catalyst 52
2.2.1.1. Catalytic metal components 52
2.2.1.2. Catalyst supports 53
2.2.1.3. Modified nickel catalysts 53
2.2.2. Reaction conditions 55
2.2.3. Reaction pathways 55
2.2.4. Nature of the feed 56
2.3. Factors favoring production of heavier alkanes 58
2.4. Producing hydrogen containing low levels of CO: ultra-shift 59
2.5. Hydrogen from concentrated glucose feeds 61
3. DISCUSSION AND OVERVIEW 62
4. CONCLUSIONS 68
ACKNOWLEDGEMENTS 68
REFERENCES 68
4 Fuel processing for low- and high-temperature fuel cells: challenges, and opportunities for sustainable development in the 21st century 70
Abstract 70
1. INTRODUCTION 71
2. SUSTAINABLE DEVELOPMENT OF ENERGY 72
2.1. Supply-side challenge of energy balance 72
2.2. Sustainable development of energy 74
2.3. Vision for efficient utilization of hydrocarbon resources 74
3. PRINCIPLE AND ADVANTAGES OF FUEL CELLS 76
3.1. Concept of fuel cells 76
3.2. Efficiency of fuel cells 76
3.3. Types of fuel cells 77
3.3.1. Proton-exchange membrane fuel cell 78
3.3.2. Phosphoric acid fuel cell 79
3.3.3. Alkaline fuel cell 80
3.3.4. Molten carbonate fuel cell 80
3.3.5. Solid oxide fuel cell 81
3.4. Advantages of fuel cells compared to conventional devices 82
4. FUEL PROCESSING FOR FUEL CELL APPLICATIONS 82
4.1. Fuel options for fuel cells 82
4.2. Fuel cells for electric power plants 84
4.3. Fuel cells for transportation 85
4.4. Fuel cells for residential and commercial sectors 86
4.5. Fuel cells as portable power sources 86
5 Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems 108
Abstract 108
1. INTRODUCTION 109
2. REFORMER CATALYSTS 109
2.1. Methane and hydrocarbon steam reforming and partial oxidation 110
2.2. Gasoline/hydrocarbon autothermal reforming 111
2.3. Methanol reforming 112
3. WATER GAS SHIFT 113
3.1. Non-precious metal catalysts 114
3.2. Precious metal catalysts 115
4. CO CLEAN-UP THROUGH PREFERENTIAL OXIDATION 117
5. CONCLUSIONS 118
ACKNOWLEDGEMENTS 119
REFERENCES 119
6 Conversion of hydrocarbons and alcohols for fuel cells 124
Abstract 124
1. INTRODUCTION 124
2. STEAM REFORMING 125
3. PARTIAL OXIDATION 128
4. CARBON MONOXIDE CLEAN-UP 129
5. THE FUEL CHOICE 131
6. CONCLUSIONS 132
REFERENCES 132
7 An assessment of alkaline fuel cell technology 134
Abstract 134
1. INTRODUCTION 135
2. ALKALINE FUEL CELL BACKGROUND AND DEVELOPMENT STATUS 136
2.1. Principle of operation 136
2.2. Research activity level 138
2.3. Corporate activities 138
3. TECHNICAL REVIEW 139
3.1. Power density 139
3.1.1. Space applications 139
3.1.2. Atmospheric pressure cells 140
3.1.3. Performance of components 141
3.1.3.1. Three-dimensional electrodes 141
3.1.3.2. Electrode materials 142
3.1.4. Comparison to PEM 143
3.2. Poisoning and contamination issues 143
3.2.1. Effect of carbon dioxide on the cathode 144
3.2.2. Carbon dioxide strategies for the cathode 145
3.2.3. Effect of impurities on the anode 146
3.2.4. Strategies for the anode 146
3.2.5. Summary of contamination effects 146
3.3. System issues 147
3.3.1. Electrolyte circulation 147
3.3.2. Salvage 148
3.4. Lifetime and duty cycle information 148
3.4.1. Zevco long-term tests 148
3.4.2. Other long-term tests 149
3.4.3. Summary of AFC lifetimes 149
4. COST ANALYSIS 150
4.1. Gross costs and commercial estimates 151
4.2. Materials and manufacturing 151
4.2.1. AFC stack materials 151
4.2.2. PEMFC stack materials 152
4.2.3. AFC system costs 153
4.2.4. PEMFC stack costs 153
4.3. Impact of production volume 153
4.4. Extrapolation to ambient air PEM 154
4.5. Balance of plant 155
4.5.1. AFC peripherals 155
4.5.1.1. Air blower 155
4.5.1.2. CO[sub(2)]-scrubber 155
4.5.1.3. Electrolyte recirculation loop 155
4.5.1.4. Water management 155
4.5.1.5. Nitrogen purge 156
4.5.2. Alkaline peripheral costs 156
4.5.3. Compressed PEMFC peripherals 156
4.5.4. Ambient air PEM peripherals 156
4.6. Cost of consumables 157
4.6.1. Soda lime 157
4.6.2. KOH 157
4.7. System cost estimates 157
5. CONCLUSIONS 158
APPENDIX A. 7KW PEMFC STACK COST DEVELOPMENT 159
REFERENCES 160
8 Molten carbonate fuel cells 164
Abstract 164
1. INTRODUCTION 164
2. CELL CONSTRUCTION 165
3. ELECTROLYTE 165
4. CATHODE MATERIALS 167
5. ANODE MATERIALS 167
6. CORROSION PROTECTION 168
7. CONCLUSION 168
ACKNOWLEDGEMENT 168
REFERENCES 168
9 Phosphoric acid fuel cells: fundamentals and applications 172
Abstract 172
1. INTRODUCTION 172
2. FUNDAMENTALS OF THE PAFC 173
3. PAFC COMPONENTS: STATE OF THE ART 175
3.1. Electrolyte and matrix 175
3.2. Electrodes 175
3.3. Bipolar plates 176
4. PAFC IN OPERATION: THE GERMAN CASE 177
4.1. First PC25C fuel cell installations in Germany 177
4.2. Hydrogen operation 177
4.3. Utilization of anaerobic digester gas 178
4.4. Energy supply for hospitals 179
4.5. Fuel cell power plant overhaul 180
4.6. Service and maintenance 180
5. CONCLUSIONS 181
REFERENCES 181
10 International activities in DMFC R& D: status of technologies and potential applications
Abstract 184
1. INTRODUCTION 185
2. CURRENT STATUS OF TECHNOLOGY AND POTENTIAL APPLICATIONS 185
2.1. Portable power 185
2.2. Transportation 192
3. STATUS OF KNOWLEDGE IN BASIC RESEARCH AREAS AND NEEDED BREAKTHROUGHS 196
3.1. Electrode kinetics and electrocatalysis of methanol oxidation 196
3.1.1. Overall reaction, intermediate steps and rate determining steps 196
3.1.2. Electrocatalysis 197
3.2. Methanol crossover 199
3.2.1. Mechanism and its effects on DMFC performance 199
3.2.2. Methods for inhibition of methanol crossover 199
3.3. Electrode kinetics and electrocatalysis of oxygen reduction 201
4. CONCLUSIONS 202
ACKNOWLEDGEMENTS 202
REFERENCES 202
11 Transport properties of solid oxide electrolyte ceramics: a brief review 206
Abstract 206
1. INTRODUCTION 207
2. ZIRCONIA-BASED SOLID ELECTROLYTES 207
3. LaGaO[sub(3)]-BASED ELECTROLYTES 211
4. DOPED CERIA ELECTROLYTES 213
5. & #948
6. MATERIALS BASED ON La[sub(2)]Mo[sub(2)]O[sub(9)] (LAMOX) 220
7. PEROVSKITE- AND BROWNMILLERITE-LIKE PHASES DERIVED FROM Ba[sub(2)]In[sub(2)]O[sub(5)] 221
8. PEROVSKITES BASED ON LnBO[sub(3)] (B=Al, In, Sc, Y) 222
9. SOLID ELECTROLYTES WITH APATITE STRUCTURE 224
10. PYROCHLORES AND FLUORITE-TYPE (Y,Nb,Zr)O[sub(2-& #948
ACKNOWLEDGEMENTS 226
REFERENCES 226
12 A review on the status of anode materials for solid oxide fuel cells 232
Abstract 232
1. INTRODUCTION 232
2. DEVELOPMENT OF ANODE MATERIALS 234
2.1. Ni–ZrO[sub(2)](Y[sub(2)]O[sub(3)]) cermet 234
2.2. CeO[sub(2)] (rare-earth doped) anode 243
2.3. Other anode materials 246
3. CONCLUSIONS 247
ACKNOWLEDGEMENTS 247
REFERENCES 248
13 Advances, aging mechanisms and lifetime in solid-oxide fuel cells 252
Abstract 252
1. INTRODUCTION 253
2. ADVANCES IN SOFC RESEARCH AND DEVELOPMENT 253
2.1. SOFC operating at temperature < 800°C
2.2. Direct supply of hydrocarbon fuels 255
2.2.1. Reforming 256
2.2.2. Direct oxidation 256
3. AGING MECHANISM OF COMPONENTS IN SOFC 258
3.1. Aging mechanism of anode 259
3.2. Aging mechanism of cathode 260
3.3. Aging mechanism of interconnect 262
4. BENEFIT OF SOFC OPERATION AT HIGHER CELL VOLTAGE 264
5. CONCLUSIONS 265
REFERENCES 265
14 Components manufacturing for solid oxide fuel cells 266
Abstract 266
1. INTRODUCTION 266
2. CELL DESIGN 267
3. CERAMIC COMPONENTS 267
4. INTERCONNECT MATERIALS 271
5. SUMMARY 273
REFERENCES 273
15 Engineered cathodes for high performance SOFCs 278
Abstract 278
1. INTRODUCTION 279
2. ENGINEERED CATHODE DEVELOPMENT 280
2.1. Estimation of current distribution 280
2.2. Material properties and microstructural sensitivities of the model 281
3. DESIGN OPTIMIZATION FOR A TWO-LAYER CATHODE 284
3.1. Outer layer 284
3.2. Inner layer 285
3.2.1. Small grain diameter (0.25 & #956
3.2.2. Larger grain diameter (0.5 & #956
4. CONCLUSIONS 286
ACKNOWLEDGEMENTS 286
APPENDIX A. MODEL PARAMETERS 286
APPENDIX B 287
APPENDIX C 289
C.1. Microstructural design including concentration polarization 289
REFERENCES 291
16 Surface science studies of model fuel cell electrocatalysts 292
Abstract 292
1. INTRODUCTION 294
2. SURFACE STRUCTURES AND ENERGETICS OF Pt(h k l) IN UHV 295
2.1. Clean surfaces 295
2.2. Adsorbate-induced changes in surface structure 296
2.2.1. Hydrogen adsorption 297
2.2.2. Oxygen adsorption 298
2.2.3. Carbon monoxide adsorption 300
3. STRUCTURES AND CHEMISTRY OF Pt BIMETALLIC SURFACES IN UHV 302
4. SURFACE STRUCTURES AND ENERGETICS OF Pt(h k l) SURFACES IN ELECTROLYTE 304
4.1. Reconstruction of Pt(hkl) surfaces 305
4.1.1. Pt(1 1 1) 305
4.1.2. Pt(1 0 0) 307
4.1.3. Pt(1 1 0) 308
4.2. Energetics of Pt(1 1 1)„H[sub(upd)] and Pt(1 1 1)„OH[sub(ad)] systems 311
4.2.2. Pt(1 1 1)„OH[sub(ad)] system 314
4.2.1. Pt(1 1 1)„H[sub(upd)] system 311
4.3. Relaxation of Pt(h k l) surfaces induced by H[sub(upd)] and OH[sub(ad)] 315
4.4. Surface structures and energetics of anion adsorption on Pt(h k l) surfaces 316
4.4.1. (Bi)sulfate adsorption 317
4.4.2. Halide adsorption 319
4.4.3. Summary of anion adsorption on Pt(h k l) 324
4.5. Surface structures of UPD and irreversibly adsorbed metals on Pt(h k l) surfaces 324
4.5.1. Cu UPD 325
4.5.2. Pb UPD 328
4.5.3. Irreversibly adsorbed Bi 330
4.6. Surface structure of thin metal films 333
5. ELECTROCATALYSIS AT WELL-DEFINED SURFACES 334
5.1. HER/HOR 336
5.1.1. Structure sensitivity on Pt(h k l) surfaces 336
5.1.2. HOR on Pt(h k l) surfaces modified with Cu[sub(upd)], Pb[sub(upd)], and Bi[sub(ir)] 341
5.1.3. HER/HOR on Pt(1 1 1)-modified with a pseudomorphic Pd film 342
5.2. ORR 344
5.2.1. Reaction pathway 344
5.2.2. Structure sensitivity on Pt(h k l) surfaces 345
5.2.3. ORR on Pt(h k l) surfaces modified with UPD metals 348
5.2.4. ORR on the Pt(1 1 1)-modified with a pseudomorphic Pd film 349
5.2.5. ORR on Pt alloy surfaces 349
5.3. Electrooxidation of CO 352
5.3.1. Surface structures of CO[sub(ad)] on Pt(h k l) surfaces 352
5.3.2. Energetics and kinetics of CO electrooxidation on Pt(h k l) surfaces 359
5.3.3. Surface chemistry of CO on Cu[sub(upd)], Pb[sub(upd)], Sn[sub(upd)], and Bi[sub(ir)]-modified Pt(h k l) surfaces 363
5.3.4. Surface chemistry of CO on Pt bimetallic alloy surfaces 366
5.4. Oxidation of formic acid on Pt(h k l) and bimetallic surfaces 370
5.5. Oxidation of methanol on Pt(h k l) and bimetallic surfaces 375
6. FUTURE DEVELOPMENTS 382
ACKNOWLEDGMENTS 383
REFERENCES 383
17 Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers 392
Abstract 392
1. INTRODUCTION 393
1.1. Polymer electrolyte fuel cells 393
1.2. Solid polymer electrolyte membranes 394
2. PROTON-CONDUCTING POLYMER ELECTROLYTE MEMBRANES BASED ON SULFONATED AROMATIC POLYMERS 396
2.1. Materials 396
2.2. Thermal stability of sulfonated aromatic polymer electrolyte membranes 399
2.3. Water uptake in sulfonated aromatic polymer electrolyte membranes 401
2.4. Proton conductivity of sulfonated aromatic polymer electrolyte membranes 403
3. PROTON-CONDUCTING POLYMER ELECTROLYTE MEMBRANES BASED ON ALKYLSULFONATED AROMATIC POLYMERS 406
3.1. Materials 406
3.2. Thermal stability of alkylsulfonated aromatic polymer electrolyte membranes 408
3.3. Water uptake in alkylsulfonated aromatic polymer electrolyte membranes 409
3.4. Proton conductivity of alkylsulfonated aromatic polymer electrolyte membranes 410
4. PROTON-CONDUCTING POLYMER ELECTROLYTE MEMBRANES BASED ON ACID-BASE POLYMER COMPLEXES 413
4.1. Materials 413
4.2. Thermal stability of acid–base polymer complexes 417
4.3. Conductivity of acid–base polymer complex 418
5. OTHER PROTON-CONDUCTING POLYMER ELECTROLYTE MEMBRANES 420
6. FUEL CELL APPLICATIONS 425
7. SUMMARY 425
REFERENCES 426
18 Advanced materials for improved PEMFC performance and life 428
Abstract 428
1. INTRODUCTION 429
1.1. Nafion® PFSA polymer 429
1.2. Nafion® PFSA membranes 429
1.3. Nafion® PFSA polymer dispersions 430
1.4. Polymer chemical stability 430
2. EXPERIMENTAL 431
2.1. Polymer chemical stability measurements 431
2.2. Viscosity measurements 431
2.3. Size-exclusion chromatography (SEC) 432
2.4. Dynamic mechanical analysis (DMA) 432
2.5. Surface tension 432
2.6. Contact angle 432
2.7. Electrical shorts tolerance 433
2.8. Accelerated lifetime 433
3. RESULTS AND DISCUSSION 433
3.1. Polymer chemical stability 433
3.2. Nafion® PFSA polymer dispersions 435
3.3. Nafion® PFSA solution-cast membranes 436
3.4. Nafion® ST membranes 438
4. CONCLUSIONS 440
ACKNOWLEDGMENTS 440
REFERENCES 440
19 Polymer–ceramic composite protonic conductors 442
Abstract 442
1. INTRODUCTION 442
2. PRIOR WORK: CHEMISTRY, PROCESSING, AND PROPERTIES 443
3. DISCUSSION 444
3.1. Water retention 444
3.2. Polymer–ceramic particle interaction and microstructure 444
3.3. Transport of charged species in a composite material 445
4. THERMAL AND MECHANICAL ROBUSTNESS 447
5. PERMEABILITY OF MOLECULAR SPECIES 447
6. SUMMARY AND CONCLUSIONS 448
ACKNOWLEDGMENTS 449
REFERENCES 449
20 Recent developments in high-temperature proton conducting polymer electrolyte membranes 450
Abstract 450
1. INTRODUCTION 450
2. IONOMERS AND IONOMER MEMBRANES 451
3. ORGANIC–INORGANIC HYBRID MEMBRANES 452
4. MEMBRANES BASED ON POLYMERS AND OXO-ACIDS 454
5. ALL-POLYMERIC ELECTROLYTES 455
6. THEORETICAL STUDIES 455
7. CONCLUSIONS 456
ACKNOWLEDGEMENTS 456
REFERENCES AND RECOMMENDED READING 456
21 PEM fuel cell electrodes 460
Abstract 460
1. INTRODUCTION 461
1.1. Catalyst layer 463
1.2. Gas diffusion layer 463
1.3. Electrode designs 463
2. PTFE-BOUND METHODS 464
2.1. Nafion impregnation 464
3. THIN-FILM METHODS 465
3.1. Nafion loading 468
3.2. Organic solvents 468
3.3. Pore formers in the catalyst layer 469
3.4. Thermoplastic ionomers 470
3.5. Colloidal method 471
3.6. Controlled self assembly 472
4. VACUUM DEPOSITION METHODS 472
4.1. Graded catalyst deposition 474
4.2. Multiple layer sputtering 475
5. ELECTRODEPOSITION METHODS 476
5.1. Effect of current control 477
5.2. Membrane layer 477
6. IMPREGNATED CATALYST LAYER 478
7. CATALYST SUPPORTS 478
7.1. Pt/C weight ratio 479
7.2. Binary carbon catalyst supports 479
7.3. Conducting polymer catalyst supports 480
7.4. Carbon nanohorn catalyst supports 480
8. GAS DIFFUSION LAYER DEVELOPMENT 480
8.1. Polytetrafluoroethylene (PTFE) content 481
8.2. Influence of carbon powder 481
8.3. Thickness 481
8.4. Composite gas diffusion layer 482
8.5. Pore formers in the gas diffusion layer 482
9. CONCLUSION 483
REFERENCES 483
22 Review and analysis of PEM fuel cell design and manufacturing 486
Abstract 486
1. INTRODUCTION 487
2. REVIEW AND ANALYSIS OF MEMBRANE ELECTRODE ASSEMBLY DESIGN AND MANUFACTURING 488
2.1. MEA design 488
2.1.1. Membrane design 488
2.1.2. Catalyst layer design 491
2.1.3. Gas diffusion layer design 498
2.2. MEA manufacturing 498
2.2.1. Membrane and GDL fabrication 498
2.2.2. MEA assembly 502
3. REVIEW AND ANALYSIS OF BIPOLAR PLATE DESIGN AND MANUFACTURING 507
3.1. Bipolar plate design 507
3.1.1. Non-porous graphite plates 508
3.1.2. Coated metallic plates 508
3.1.3. Composite plates 510
3.2. Bipolar plate manufacturing 511
3.2.1. Non-porous graphite plate fabrication 511
3.2.2. Coated metallic plate fabrication 511
3.2.3. Composite plate fabrication 511
4. DISCUSSION 513
ACKNOWLEDGMENTS 516
REFERENCES 516
23 Aging mechanisms and lifetime of PEFC and DMFC 520
Abstract 520
1. INTRODUCTION 520
2. EXPERIMENTAL 521
3. DISCUSSION 522
3.1. Low reactant flow 522
3.2. Low humidification 523
3.3. High humidification 526
3.4. Low temperature 529
3.5. High temperature 530
4. CONCLUSIONS 532
ACKNOWLEDGEMENTS 532
REFERENCES 532
24 Materials for hydrogen storage 534
Abstract 534
1. INTRODUCTION 534
2. STORING HYDROGEN AS A GAS 535
2.1. High-pressure gas cylinders 536
3. LIQUID-HYDROGEN STORAGE 537
4. PHYSISORPTION OF HYDROGEN 538
5. METAL HYDRIDES 541
6. COMPLEX HYDRIDES 544
7. STORAGE VIA CHEMICAL REACTIONS 545
8. CONCLUSION 545
ACKNOWLEDGMENTS 546
REFERENCES 546
25 Fuel economy of hydrogen fuel cell vehicles 548
Abstract 548
1. INTRODUCTION 548
2. FUEL CELL SYSTEM 549
3. PERFORMANCE OF FUEL CELL SYSTEM 550
3.1. Air management system 551
3.2. PEFC stack 552
3.3. PEFC system performance 552
4. PERFORMANCE OF FUEL CELL VEHICLES 554
4.1. Fuel economy 556
4.2. Effects of fuel cell system parameters 557
4.3. Effects of improved H[sub(2)]-FCV parameters 558
4.4. Onboard hydrogen storage requirements to yield 320-mile range 559
5. CONCLUSIONS 559
ACKNOWLEDGEMENTS 560
REFERENCES 560
26 PEMFC systems: the need for high temperature polymers as a consequence of PEMFC water and heat management 562
Abstract 562
1. INTRODUCTION 562
2. THEORY 563
3. EXPERIMENTAL 564
4. CONSEQUENCES OF HIGH RELATIVE HUMIDITY 566
4.1. Humidifier 566
4.2. Cathode 568
4.3. Water separator 568
4.4. Overall heat management 569
5. DISCUSSION 570
REFERENCES 571
27 Portable and military fuel cells 572
Abstract 572
1. INTRODUCTION 572
2. CURRENT DEVELOPMENTS IN PEMFCs FOR PORTABLE APPLICATIONS 573
2.1. Direct methanol fuel cells 574
2.2. Hydrogen for portable systems 575
3. CONCLUSIONS 576
REFERENCES 576
28 Microfabricated fuel cells 578
Abstract 578
1. INTRODUCTION 579
2. DESIGN PRINCIPLES AND FABRICATION ISSUES 579
2.1. Current collectors/gas diffusion layers 580
2.2. Electrolyte issues 581
3. FUEL CELL PERFORMANCE 583
4. HYDROGEN STORAGE AND GENERATION 585
4.1. Hydrogen generation via decomposition of sodium borohydride solutions 585
4.2. Hydrogen storage in metal hydrides 586
5. SUMMARY 588
ACKNOWLEDGMENTS 589
REFERENCES 589
29 Electro-catalytic membrane reactors and the development of bipolar membrane technology 590
Abstract 590
1. GENERAL INTRODUCTION 591
2. THE CHLOR-ALKALI ELECTROLYSIS 593
2.1. Introduction – chlor-alkali industry 593
2.2. Principle – membrane electrolysis cell 593
3. THE FUEL CELL 596
3.1. Introduction 596
3.2. Polymer-electrolyte fuel cell 597
3.2.1. Catalyst in PEFC 597
3.2.2. Polymeric membrane in PEFC 598
4. BIPOLAR MEMBRANES 599
4.1. Introduction 599
4.2. Principle of a BPM 599
4.3. Principle of BPM electrodialysis 600
4.4. Preparation of BPMs 601
4.5. Characterization of BPMs 602
4.6. Limitations of EDBPM 603
4.7. EDBPM processes 604
REFERENCES 605
NOMENCLATURE 608
30 Compact mixed-reactant fuel cells 610
Abstract 610
1. INTRODUCTION 611
2. SIGNIFICANCE OF THE COMPACT MIXED-REACTANT FUEL CELL 611
3. HISTORY OF MIXED-REACTANT FUEL CELLS 612
4. DEVELOPMENT OF CMR SYSTEMS 617
5. SAFETY OF MIXED-REACTANT AND CMR SYSTEMS 621
6. CONCLUSION 621
ACKNOWLEDGEMENTS 622
REFERENCES 622
Subject Index 624
A 624
B 625
C 625
D 626
E 627
F 627
G 628
H 629
I 629
J 630
K 630
L 630
M 630
N 631
O 631
P 631
R 634
S 634
T 635
U 635
V 636
W 636
X 636
Z 636

Erscheint lt. Verlag 24.11.2005
Sprache englisch
Themenwelt Naturwissenschaften Chemie Technische Chemie
Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Technik Umwelttechnik / Biotechnologie
Wirtschaft
ISBN-10 0-08-045725-8 / 0080457258
ISBN-13 978-0-08-045725-3 / 9780080457253
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Manfred Baerns; Arno Behr; Axel Brehm; Jürgen Gmehling …

eBook Download (2023)
Wiley-VCH GmbH (Verlag)
84,99