Wiener Chaos: Moments, Cumulants and Diagrams (eBook)

A survey with Computer Implementation
eBook Download: PDF
2011 | 2011
XIII, 274 Seiten
Springer Italia (Verlag)
978-88-470-1679-8 (ISBN)

Lese- und Medienproben

Wiener Chaos: Moments, Cumulants and Diagrams - Giovanni Peccati, Murad S. Taqqu
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The concept of Wiener chaos generalizes to an infinite-dimensional setting the properties of orthogonal polynomials associated with probability distributions on the real line. It plays a crucial role in modern probability theory, with applications ranging from Malliavin calculus to stochastic differential equations and from probabilistic approximations to mathematical finance. This book is concerned with combinatorial structures arising from the study of chaotic random variables related to infinitely divisible random measures. The combinatorial structures involved are those of partitions of finite sets, over which Möbius functions and related inversion formulae are defined. This combinatorial standpoint (which is originally due to Rota and Wallstrom) provides an ideal framework for diagrams, which are graphical devices used to compute moments and cumulants of random variables. Several applications are described, in particular, recent limit theorems for chaotic random variables. An Appendix presents a computer implementation in MATHEMATICA for many of the formulae.

Giovanni Peccati is a Professor of Stochastic Analysis and Mathematical Finance at Luxembourg University. Murad S. Taqqu is a Professor of Mathematics and Statistics at Boston University.
The concept of Wiener chaos generalizes to an infinite-dimensional setting the properties of orthogonal polynomials associated with probability distributions on the real line. It plays a crucial role in modern probability theory, with applicationsranging from Malliavin calculus to stochastic differential equations and fromprobabilistic approximations to mathematical finance. This book is concerned with combinatorial structures arising from the studyof chaotic random variables related to infinitely divisible random measures. The combinatorial structures involved are those of partitions of finite sets, over which Mbius functions and related inversion formulae are defined. This combinatorial standpoint (which is originally due to Rota and Wallstrom) provides an ideal framework for diagrams, which are graphical devices used to compute moments and cumulants of random variables. Several applications are described, in particular, recent limit theorems for chaotic random variables. An Appendix presents a computer implementation in MATHEMATICA for many of the formulae.

Giovanni Peccati is a Professor of Stochastic Analysis and Mathematical Finance at Luxembourg University. Murad S. Taqqu is a Professor of Mathematics and Statistics at Boston University.

Erscheint lt. Verlag 6.4.2011
Reihe/Serie Bocconi & Springer Series
Bocconi & Springer Series
Zusatzinfo XIII, 274 p.
Verlagsort Milano
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Graphentheorie
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Recht / Steuern Wirtschaftsrecht
Technik
Wirtschaft Betriebswirtschaft / Management
Schlagworte combinatorics • Diagram formulae • Lattices of partitions • limit theorems • Moments and cumulants • Quantitative Finance • Wiener chaos
ISBN-10 88-470-1679-7 / 8847016797
ISBN-13 978-88-470-1679-8 / 9788847016798
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Ohne DRM)

Digital Rights Management: ohne DRM
Dieses eBook enthält kein DRM oder Kopier­schutz. Eine Weiter­gabe an Dritte ist jedoch rechtlich nicht zulässig, weil Sie beim Kauf nur die Rechte an der persön­lichen Nutzung erwerben.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich