Markov Decision Processes with Their Applications (eBook)
XV, 297 Seiten
Springer US (Verlag)
978-0-387-36951-8 (ISBN)
Put together by two top researchers in the Far East, this text examines Markov Decision Processes - also called stochastic dynamic programming - and their applications in the optimal control of discrete event systems, optimal replacement, and optimal allocations in sequential online auctions. This dynamic new book offers fresh applications of MDPs in areas such as the control of discrete event systems and the optimal allocations in sequential online auctions.
Markov decision processes (MDPs), also called stochastic dynamic programming, were first studied in the 1960s. MDPs can be used to model and solve dynamic decision-making problems that are multi-period and occur in stochastic circumstances. There are three basic branches in MDPs: discrete-time MDPs, continuous-time MDPs and semi-Markov decision processes. Starting from these three branches, many generalized MDPs models have been applied to various practical problems. These models include partially observable MDPs, adaptive MDPs, MDPs in stochastic environments, and MDPs with multiple objectives, constraints or imprecise parameters.Markov Decision Processes With Their Applications examines MDPs and their applications in the optimal control of discrete event systems (DESs), optimal replacement, and optimal allocations in sequential online auctions. The book presents four main topics that are used to study optimal control problems: a new methodology for MDPs with discounted total reward criterion; transformation of continuous-time MDPs and semi-Markov decision processes into a discrete-time MDPs model, thereby simplifying the application of MDPs; MDPs in stochastic environments, which greatly extends the area where MDPs can be applied; applications of MDPs in optimal control of discrete event systems, optimal replacement, and optimal allocation in sequential online auctions.This book is intended for researchers, mathematicians, advanced graduate students, and engineers who are interested in optimal control, operation research, communications, manufacturing, economics, and electronic commerce.
Contents 6
List of Figures 10
List of Tables 11
Preface 12
Acknowledgments 14
INTRODUCTION 15
1. A Brief Description of Markov Decision Processes 15
2. Overview of the Book 18
3. Organization of the Book 20
DISCRETE TIME MARKOV DECISION PROCESSES: TOTAL REWARD 24
1. Model and Preliminaries 24
1.1 System Model 24
1.2 Some Concepts 25
1.3 Finiteness of the Reward 27
2. Optimality Equation 30
2.1 Validity of the Optimality Equation 30
2.2 Properties of the Optimality Equation 34
3. Properties of Optimal Policies 38
4. Successive Approximation 43
5. Sufficient Conditions 45
6. Notes and References 47
Problems 48
DISCRETE TIME MARKOV DECISION PROCESSES: AVERAGE CRITERION 52
1. Model and Preliminaries 52
2. Optimality Equation 56
2.1 Properties of ACOE and Optimal Policies 57
2.2 Sufficient Conditions 61
2.3 Recurrent Conditions 63
3. Optimality Inequalities 66
3.1 Conditions 67
3.2 Properties of ACOI and Optimal Policies 70
4. Notes and References 73
Problems 74
CONTINUOUS TIME MARKOV DECISION PROCESSES 75
1. A Stationary Model: Total Reward 75
1.1 Model and Conditions 75
1.2 Model Decomposition 79
1.3 Some Properties 83
1.4 Optimality Equation and Optimal Policies 89
2. A Nonstationary Model: Total Reward 97
2.1 Model and Conditions 97
2.2 Optimality Equation 99
3. A Stationary Model: Average Criterion 107
4. Notes and References 113
Problems 114
SEMI-MARKOV DECISION PROCESSES 116
1. Model and Conditions 116
1.1 Model 116
1.2 Regular Conditions 118
1.3 Criteria 121
2. Transformation 122
2.1 Total Reward 123
2.2 Average Criterion 126
3. Notes and References 130
Problems 131
MARKOV DECISION PROCESSES IN SEMI- MARKOV ENVIRONMENTS 132
1. Continuous Time Markov Decision Processes in Semi- Markov Environments 132
1.1 Model 132
1.2 Optimality Equation 138
1.3 Approximation byWeak Convergence 148
1.4 Markov Environment 151
1.5 Phase Type Environment 154
2. Semi-Markov Decision Processes in Semi-Markov Environments 159
2.1 Model 159
2.2 Optimality Equation 163
2.3 Markov Environment 169
3. Mixed Markov Decision Processes in Semi-Markov Environments 171
3.1 Model 171
3.2 Optimality Equation 174
3.3 Markov Environment 181
4. Notes and References 185
Problems 186
OPTIMAL CONTROL OF DISCRETE EVENT SYSTEMS: I 187
1. System Model 187
2. Optimality 190
2.1 Maximum Discounted Total Reward 192
2.2 Minimum Discounted Total Reward 196
3. Optimality in Event Feedback Control 196
4. Link to Logic Level 199
5. Resource Allocation System 204
6. Notes and References 211
Problems 212
OPTIMAL CONTROL OF DISCRETE EVENT SYSTEMS: II 213
1. System Model 213
2. Optimality Equation and Optimal Supervisors 217
3. Language Properties 223
4. System Based on Automaton 225
5. Supervisory Control Problems 228
5.1 Event Feedback Control 228
5.2 State Feedback Control 232
6. Job-Matching Problem 233
7. Notes and References 240
Problems 240
OPTIMAL REPLACEMENT UNDER STOCHASTIC ENVIRONMENTS 242
1. Optimal Replacement: Discrete Time 243
1.1 Problem and Model 243
1.2 Total Cost Criterion 247
1.3 Average Criterion 250
2. Optimal Replacement: Semi-Markov Processes 253
2.1 Problem 253
2.2 Optimal Control Limit Policies 256
2.3 Markov Environment 259
2.4 Numerical Example 267
3. Notes and References 269
Problems 271
OPTIMAL ALLOCATION IN SEQUENTIAL ONLINE AUCTIONS 273
1. Problem and Model 273
2. Analysis for Private Reserve Price 275
3. Analysis for Announced Reserve Price 279
4. Monotone Properties 281
5. Numerical Results 290
6. Notes and References 292
Problems 293
References 295
Index 303
Erscheint lt. Verlag | 14.9.2007 |
---|---|
Reihe/Serie | Advances in Mechanics and Mathematics | Advances in Mechanics and Mathematics |
Zusatzinfo | XV, 297 p. |
Verlagsort | New York |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Mathematik / Informatik ► Mathematik ► Angewandte Mathematik | |
Mathematik / Informatik ► Mathematik ► Finanz- / Wirtschaftsmathematik | |
Mathematik / Informatik ► Mathematik ► Statistik | |
Mathematik / Informatik ► Mathematik ► Wahrscheinlichkeit / Kombinatorik | |
Technik ► Bauwesen | |
Technik ► Maschinenbau | |
Wirtschaft ► Betriebswirtschaft / Management | |
Schlagworte | decision making problems • Decision Processes • discrete event systems • Markov decision process • Observable • optimal control • stochastic dynamic programming |
ISBN-10 | 0-387-36951-1 / 0387369511 |
ISBN-13 | 978-0-387-36951-8 / 9780387369518 |
Haben Sie eine Frage zum Produkt? |
Größe: 3,8 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich