Information Extraction: Algorithms and Prospects in a Retrieval Context (eBook)

eBook Download: PDF
2006 | 2006
XIV, 246 Seiten
Springer Netherland (Verlag)
978-1-4020-4993-4 (ISBN)

Lese- und Medienproben

Information Extraction: Algorithms and Prospects in a Retrieval Context - Marie-Francine Moens
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book covers content recognition in text, elaborating on past and current most successful algorithms and their application in a variety of settings: news filtering, mining of biomedical text, intelligence gathering, competitive intelligence, legal information searching, and processing of informal text. Today, there is considerable interest in integrating the results of information extraction in retrieval systems, because of the demand for search engines that return precise answers to flexible information queries.


Currently, there is a considerable interest in integrating the results of information extraction in retrieval systems, because of the growing demand for search engines that return precise answers to flexible information queries. Advanced retrieval models satisfy that need and they rely on tools that automatically build a probabilistic model of the content of a (multi-media) document. The book focuses on content recognition in text. It elaborates on the past and current most successful algorithms and their application in a variety of domains (e.g., news filtering, mining of biomedical text, intelligence gathering, competitive intelligence, legal information searching, and processing of informal text). An important part discusses current statistical and machine learning algorithms for information detection and classification and integrates their results in probabilistic retrieval models. The book also reveals a number of ideas towards an advanced understanding and synthesis of textual content.

1 Information Extraction and Information Technology.- 1.1 Defining Information Extraction.-1.2 Explaining Information Extraction.- 1.3 Information Extraction and Information Retrieval.- 1.4 Information Extraction and Other Information Processing Tasks.- 1.5 The Aims of the Book.- 1.6 Conclusions. -1.7 Bibliography.- 2 Information Extraction from an Historical Perspective.- 2.1 Introduction.- 2.2 A Historical Overview.- 2.3 The Common Extraction Process.- 2.4 A Cascade of Tasks.- 2.5 Conclusions.- 2.6 Bibliography.- 3 The Symbolic Techniques.- 3.1 Introduction.- 3.2 Conceptual Dependency Theory and Scripts.-3.3 Frame Theory.-3.4 Actual Implementations of Symbolic Techniques.- 3.5 Conclusions.- 3.6 Bibliography.- 4 Pattern Recognition.- 4.1 Introduction.- 4.2 What is Pattern Recognition?.- 4.3 The Classification Scheme.- 4.4 The Information Units to Extract.- 4.5 The Features.- 4.6 Conclusions.- 4.7 Bibliography.- 5 Supervised Classification.- 5.1 Introduction.- 5.2 Support Vector Machines.- 5.3 Maximum Entropy Models.- 5.4 Hidden Markov Models.- 5.5 Conditional Random Fields.- 5.6 Decision Rules and Trees.- 5.7 Relational Learning.- 5.8 Conclusions.- 5.9 Bibliography.- 6 Unsupervised Classification Aids.- 6.1 Introduction.- 6.2 Clustering.- 6.3 Expansion.- 6.4 Self-training.- 6.5 Co-training.- 6.6 Active Learning.- 6.7 Conclusions.-6.8 Bibliography.- 7 Integration of Information Extraction in Retrieval Models.- 7.1 Introduction.- 7.2 State of the Art of Information Retrieval.- 7.3 Requirements of Retrieval Systems.- 7.4 Motivation of Incorporating Information Extraction.- 7.5 Retrieval Models.- 7.6 Data Structures.- 7.7 Conclusions.- 7.8 Bibliography.- 8 Evaluation of Information Extraction Technologies.- 8.1 Introduction.- 8.2 Intrinsic Evaluation ofInformation Extraction.- 8.3 Extrinsic Evaluation of Information Extraction in Retrieval.- 8.4 Other Evaluation Criteria.- 8.5 Conclusions.-
8.6 Bibliography.- 9 Case Studies.- 9.1 Introduction.- 9.2 Generic versus Domain Specific Character.- 9.3 Information Extraction from News Texts.- 9.4 Information Extraction from Biomedical Texts.- 9.5 Intelligence Gathering.- 9.6 Information Extraction from Business Texts.- 9.7 Information Extraction from Legal Texts.- 9.8 Information Extraction from Informal Texts.- 9.9 Conclusions.- 9.10 Bibliography.- 10 The Future of Information Extraction in a Retrieval Context.- 10.1 Introduction.- 10.2 The Human Needs and the Machine Performances.- 10.3 Most Important Findings.- 10.4 Algorithmic Challenges.- 10.5 The Future of IE in a Retrieval Context.- 10.6 Bibliography.-

Erscheint lt. Verlag 10.10.2006
Reihe/Serie The Information Retrieval Series
The Information Retrieval Series
Zusatzinfo XIV, 246 p.
Verlagsort Dordrecht
Sprache englisch
Themenwelt Informatik Theorie / Studium Künstliche Intelligenz / Robotik
Sozialwissenschaften Kommunikation / Medien Buchhandel / Bibliothekswesen
Sozialwissenschaften Politik / Verwaltung
Wirtschaft
Schlagworte algorithms • berck • classification • Cognition • Dom • filtering • Hidden Markov Model • Information Processing • Information Technology • Intelligence • learning • machine learning • Performance
ISBN-10 1-4020-4993-5 / 1402049935
ISBN-13 978-1-4020-4993-4 / 9781402049934
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 5,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
der Praxis-Guide für Künstliche Intelligenz in Unternehmen - Chancen …

von Thomas R. Köhler; Julia Finkeissen

eBook Download (2024)
Campus Verlag
38,99
Wie du KI richtig nutzt - schreiben, recherchieren, Bilder erstellen, …

von Rainer Hattenhauer

eBook Download (2023)
Rheinwerk Computing (Verlag)
17,43