Data Analysis, Classification and the Forward Search (eBook)

Proceedings of the Meeting of the Classification and Data Analysis Group (CLADAG) of the Italian Statistical Society, University of Parma, June 6-8, 2005
eBook Download: PDF
2007 | 2006
VIII, 426 Seiten
Springer Berlin (Verlag)
978-3-540-35978-4 (ISBN)

Lese- und Medienproben

Data Analysis, Classification and the Forward Search -
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book presents new developments in data analysis, classification and multivariate statistics, and in their algorithmic implementation. The volume offers contributions to the theory of clustering and discrimination, multidimensional data analysis, data mining, and robust statistics with a special emphasis on the novel Forward Search approach. Many papers provide significant insight in a wide range of fields of application. Customer satisfaction and service evaluation are two examples of such emerging fields.

Preface 6
Contents 8
Clustering and Discrimination 13
Genetic Algorithms- based Approaches for Clustering Time Series 14
On the Choice of the Kernel Function in Kernel Discriminant Analysis Using Information Complexity 22
Growing Clustering Algorithms in Market Segmentation: Defining Target Groups and Related Marketing Communication 33
Graphical Representation of Functional Clusters and MDS Configurations 41
Estimation of the Structural Mean of a Sample of Curves by Dynamic Time Warping 48
Sequential Decisional Discriminant Analysis 58
Regularized Sliced Inverse Regression with Applications in Classification 67
Multidimensional Data Analysis and Multivariate Statistics 75
Approaches to Asymmetric Multidimensional Scaling with External Information 76
Variable Architecture Bayesian Neural Networks: Model Selection Based on EMC 84
Missing Data in Optimal Scaling 92
Simple Component Analysis Based on RV Coefficient 100
Baum-Eagon Inequality in Probabilistic Labeling Problems 109
Monotone Constrained EM Algorithms for Multinomial Mixture Models 117
Visualizing Dependence of Bootstrap Confidence Intervals for Methods Yielding Spatial Configurations 125
Automatic Discount Selection for Exponential Family State-Space Models 133
A Generalization of the Polychoric Correlation Coefficient 141
The Effects of MEP Distributed Random Effects on Variance Component Estimation in Multilevel Models 149
Calibration Confidence Regions Using Empirical Likelihood 159
Robust Methods and the Forward Search 167
Random Start Forward Searches with Envelopes for Detecting Clusters in Multivariate Data 168
Robust Transformation of Proportions Using the Forward Search 177
The Forward Search Method AppUed to Geodetic Transformations 185
An R Package for the Forward Analysis of Multivariate Data 193
A Forward Search Method for Robust Generahsed Procrustes Analysis 202
A Projection Method for Robust Estimation and Clustering in Large Data Sets 212
Robust Multivariate Calibration 220
Data Mining Methods and Software 228
Procrustes Techniques for Text Mining 229
Building Recommendations from Random Walks on Library OPAC Usage Data 237
A Software Tool via Web for the Statistical Data Analysis: R-php 249
Evolutionary Algorithms for Classification and Regression Trees 257
Variable Selection Using Random Forests 265
Boosted Incremental Tree-based Imputation of Missing Data 273
Sensitivity of Attributes on the Performance of Attribute-Aware Collaborative Filtering 281
Multivariate Methods for Customer Satisfaction and Service Evaluation 289
Customer Satisfaction Evaluation: An Approach Based on Simultaneous Diagonalization 290
Analyzing Evaluation Data: Modelling and Testing for Homogeneity 299
Archetypal Analysis for Data Driven Benchmarking 308
Determinants of Secondary School Dropping Out: a Structural Equation Model 318
Testing Procedures for Multilevel Models with Administrative Data 328
Multidimensional Versus Unidimensional Models for Ability Testing 337
Multivariate Methods in Applied Science 345
A Spatial Mixed Model for Sectorial Labour Market Data 346
The Impact of the New Labour Force Survey on the Employed Classification 355
Using CATPCA to Evaluate Market Regulation 364
Credit Risk Management Through Robust Generalized Linear Models 372
Classification of Financial Returns According to Thresholds Exceedances 382
Nonparametric Clustering of Seismic Events 392
A Non- Homogeneous Poisson Based Model for Daily Rainfall Data 400
A Comparison of Data Mining Methods and Logistic Regression to Determine Factors Associated with Death Following Injury 412
Author Index 419

Erscheint lt. Verlag 6.8.2007
Reihe/Serie Studies in Classification, Data Analysis, and Knowledge Organization
Studies in Classification, Data Analysis, and Knowledge Organization
Zusatzinfo VIII, 426 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Mathematik / Informatik Informatik
Mathematik / Informatik Mathematik Statistik
Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Sozialwissenschaften Kommunikation / Medien Buchhandel / Bibliothekswesen
Sozialwissenschaften Politik / Verwaltung
Technik
Wirtschaft Betriebswirtschaft / Management Wirtschaftsinformatik
Schlagworte algorithms • classification • Clustering • Communication • Complexity • Data Analysis • Data Mining • Discrimination • expectation–maximization algorithm • Forward Search • Generalized Linear Model • Information • Modeling • Multidimensional Scaling • Multivariate Statistics • Sage • service-oriented computing • Time Series
ISBN-10 3-540-35978-8 / 3540359788
ISBN-13 978-3-540-35978-4 / 9783540359784
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 20,4 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich

von Jim Sizemore; John Paul Mueller

eBook Download (2024)
Wiley-VCH GmbH (Verlag)
24,99