Combinatorial Methods for Chemical and Biological Sensors (eBook)

eBook Download: PDF
2009 | 2009
XX, 494 Seiten
Springer New York (Verlag)
978-0-387-73713-3 (ISBN)

Lese- und Medienproben

Combinatorial Methods for Chemical and Biological Sensors -
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Chemical sensors are in high demand for applications as varied as water pollution detection, medical diagnostics, and battlefield air analysis. Designing the next generation of sensors requires an interdisciplinary approach. The book provides a critical analysis of new opportunities in sensor materials research that have been opened up with the use of combinatorial and high-throughput technologies, with emphasis on experimental techniques. For a view of component selection with a more computational perspective, readers may refer to the complementary volume of Integrated Analytical Systems edited by M. Ryan et al., entitled 'Computational Methods for Sensor Material Selection'.


Chemical sensors are in high demand for applications as varied as water pollution detection, medical diagnostics, and battlefield air analysis. Designing the next generation of sensors requires an interdisciplinary approach. The book provides a critical analysis of new opportunities in sensor materials research that have been opened up with the use of combinatorial and high-throughput technologies, with emphasis on experimental techniques. For a view of component selection with a more computational perspective, readers may refer to the complementary volume of Integrated Analytical Systems edited by M. Ryan et al., entitled "e;Computational Methods for Sensor Material Selection"e;.

Introduction to Combinatorial Methods for Chemical and Biological Sensors 21
Introduction 21
Challenges in Rational Design of Sensing Materials 22
General Principles of Combinatorial Materials Screening 23
Opportunities for Sensing Materials 26
Designs of Combinatorial Libraries of Sensing Materials 27
Diversity in Needs for Combinatorial Development of Sensing Materials 30
Main Concepts of Chemical and Biological Sensing 43
Introduction 43
Signal Transduction 48
Electrochemical Sensors 48
Mass Sensitive Sensors 53
Thermal Sensors 54
Optical Sensors 54
Mechanisms of Chemical Sensing 56
Recognition Methods in Biosensing 60
Enzymes 62
Cells, Tissues, and Microbes 63
Immuno-Systems 65
Receptors 66
Nucleic Acids: Genosensors 67
Biomimetic Sensors 69
Closing Remarks 70
Self-Assembled Monolayers with Molecular Gradients 80
Introduction 80
Self-Assembled Monolayers with Molecular Gradients 81
General Aspects of Gradually Modified Materials and Surfaces 82
Silane Monolayers on Glass or Silicon Substrates 83
Alkanethiol Monolayers on Gold Surfaces 87
Conclusion and Outlook 91
Combinatorial Libraries of Fluorescent Monolayers on Glass 97
Introduction 97
Fluorescent Monolayers on Glass 100
Synthesis of Combinatorial Libraries of Fluorescent Monolayers 102
Characterization of Fluorescent Monolayers on Glass 104
Chemical Sensing by Fluorescent Monolayers on Glass 107
Cation and Anion Sensing in Organic Solvents 108
Cation and Anion Sensing in Water 111
Combinatorial Monolayer Array Fabrication 114
Combinatorial Monolayer Array in a Microtiter Plate Format for Metal Ion Sensing 115
Combinatorial Monolayer Array in a Microfluidic Chip 119
Combinatorial Fabrication of Luminescent and Metal Ion Patterns on Glass 121
Fabrication of Metal Ion Patterns on Glass by Microcontact Printing 123
Fabrication of Metal Ion Patterns on Glass by Dip Pen Nanolithography 125
Conclusions and Outlook 126
High-Throughput Screening of Vapor Selectivity of Multisize CdSe Nanocrystal/Polymer Composite Films 132
Introduction 132
Materials Characterization 134
Spectral Properties of Photoactivated Sensing Films 135
Sensing Response Patterns 138
Multivariate Spectral Analysis 140
Response Stability 143
Conclusions 145
Computational Design of Molecularly Imprinted Polymers 149
Introduction 149
Computational Methods for Rational Design of MIPs 153
Rational Approaches that Involve Molecular Mechanics 153
Modeling of the Template Molecule 154
Construction of the Monomer Database 154
Screening of the Virtual Library 155
Computation of Monomer Template Ratio 157
Examples of Using MM Methods in MIP Design 157
Rational Approaches that Involve Molecular Dynamics (MD) 162
Examples of Using MD Methods in MIP Design 163
Rational Approaches that Involve Quantum Mechanics 168
Examples of Using QM Methods in MIP Design 168
Rational Approaches Involving Chemometrics and Neural Network Methods 172
Examples of Using Chemometrics Methods in MIP Design 172
Conclusion 174
4 Acronyms and Further Descriptions 174
Experimental Combinatorial Methods in Molecular Imprinting 187
Introduction 187
Parameters Influencing the Performance of MIPs 190
Choice of Template 190
Choice of Functional Monomers 191
Choice of Cross-Linking Monomer and Solvent 192
Choice of Temperature and Initiator 193
MiniMIPs and How to Evaluate Them 194
Measuring the Imprinting Effect 194
Measuring Binding 196
Response Factors in the Assessment of miniMIPs under Equilibrium Conditions 197
Techniques for Generating miniMIP Libraries 197
Screening of Functional Monomers for Small Target Molecules 198
Triazines 199
Nifedipine 200
Estradiol 202
Optimization of Prepolymerization Composition 204
Watercompatible MIP for Bupivacaine 205
Watercompatible MIP for Sildenafil 207
Exploring MIP Cross-Reactivity 208
Conclusions 209
Combinatorially Developed Peptide Receptors for Biosensors 214
Peptides as Materials for Molecular Recognition 214
Porphyrin Binding Peptide 215
Screening of Porphyrin-Binding Peptide 216
Apparatus to Detect Nondescript Target Bound by Peptide 216
SPR Sensor 217
QCM Sensor 218
AFM Sensor with Combinatorial Peptide 219
Herbicide-Binding Peptide 220
Screening Strategy to Obtain an Herbicide Binder 222
Sequences and Characteristics of Herbicide-Binding Peptides 222
Sensor Using Herbicide-Binding Peptides 223
Dioxin-Binding Peptide 225
Screening Strategy to Obtain a Dioxin Binder 225
Sequences and Characteristics of Dioxin-Binding Peptides 227
Second Screening to Improve the Sensing Capability of the Peptides 229
Detecting Dioxin in Practical Environmental Soil Samples 230
Importance of Full Library Screening 231
Combinatorial Libraries of Arrayable Single-Chain Antibodies 235
Introduction 235
Design of the Human Combinatorial “Ronit 1” Library 237
Construction of the Library 240
Quality Control of the Library After Construction 242
Isolation of Specific Binders from the Library: “Standard” Bio-Panning 244
Isolation of Specific Binders from the Library: Cellulose Filter Colony Lift Screen 245
Applications of Library-Derived scFvs 250
Applications of Library-Derived scFvs in a Cellulose-Based Spotted Microarray 253
Conclusion 254
A Modular Strategy for Development of RNA-Based Fluorescent Sensors 261
Introduction 261
Modular Strategy for Tailoring Fluorescent Biosensors from RNP 264
Conversion of an ATP-Binding RNP Receptor to a Fluorescent ATP Sensor 264
Construction of Fluorescent RNP Libraries and Screening of Fluorescent RNP Sensors 265
Screening of ATP Sensors Responding Within Desired Concentration Range 268
Sensing Multiple Ligands at Different Wavelengths 270
Selective Fluorescence Responses of the ATP and GTP Sensors 271
Fluorescent RNP Sensors for Biologically Important Targets 274
Phosphotyrosine 274
Biogenic Amines 275
Conclusions 277
Impedometric Screening of Gas-Sensitive Inorganic Materials 283
Introduction 283
High Throughput Setup 285
Multielectrode Array 285
High Throughput Impedance Spectroscopy Setup 287
Flexible Data Handling 289
Experimental Section 290
Sample Preparation 290
Thick Film Preparation 291
Impedance Screening 293
Data Fitting and Evaluation 293
Gas Sensing Properties 296
Conclusion 300
Design of Selective Gas Sensors Using Combinatorial Solution Deposition of Oxide Semiconductor Films 304
Introduction 304
Combinatorial Approaches in Oxide Semiconductor Gas Sensors 305
Design of Selective Gas Sensing Materialsby Combinatorial Solution Deposition 308
Formation of Oxide Sols 308
Combinatorial Solution Deposition of Gas Sensing Films 309
Phase and Microstructure 310
Gas Sensing Characteristics 311
Discussion 314
Combinatorial Solution Deposition: Materials and Processing Issue and Future Outlook 315
Conclusions 317
Combinatorial Development of Chemosensitive Conductive Polymers 323
Functions of Conductive Polymers in Chemo and Biosensors 323
Synthesis of Conductive Polymers 324
Chemical Synthesis and Electropolymerization 324
Variable Parameters of Conductive Polymers 325
Combinatorial Synthesis of Conductive Polymers 326
Multiparameter Characterization of Chemosensitive Properties of Conductive Polymers 332
Outlook 335
Robotic Systems for Combinatorial Electrochemistry 339
Motivation for the Electrochemical Robotic System 339
Conception and Evaluation of the Electrochemical Robotic System 349
Applications of the Electrochemical Robotic System 355
Electrochemical Characterization of Compound Libraries 355
Electrochemical Synthesis 358
Development and Evaluation of Chemical Sensors and Biosensors 364
Voltammetric Metal Ion Determination 367
SECM Applications of the Electrochemical Robotic System 368
Critical Evaluation of the Concept of an Electrochemical Robotic System and Conclusions 371
Combinatorial Chemistry for Optical Sensing Applications 380
Introduction 380
Combinatorial Libraries 381
Solid Supports 382
Library Sensing Efficiency 382
Fluorescent Sensor Libraries 383
Libraries for Sensing Small Molecules 384
Libraries for Metal Ion Sensing 386
Libraries of Molecularly Imprinted Materials 389
Libraries of Materials for Optical Sensing of Solvent Vapors and Oxygen 393
Conclusions 395
High Throughput Production and Screening Strategies for Creating Advanced Biomaterials and Chemical Sensors 399
Introduction 399
Biodegradable Polymers 400
Sol–Gel-Derived Materials 403
High Throughput Production and Screening as a Pathway to Create Advanced Biomaterials and Chemical Sensing Platforms 406
Selected Results 413
Conclusions 419
Diversity-Oriented Fluorescence Library Approach for Novel Sensor Development 424
Fluorescence Sensor 424
Target-Oriented Approach 425
Diversity-Oriented Fluorescence Library Approach 427
Coumarin Dye Library and Applications 430
Dapoxyl Dye Library and Human Serum Protein Sensor 431
Styryl Dye Library and Applications 434
Benzimidazolium Dye Library and GTP Sensor 437
Rosamine Dye Library and Glutathione Sensor 441
Conclusion and Perspectives 443
Construction of a Coumarin Library for Development of Fluorescent Sensors 446
Method to Develop Novel Fluorescent Sensors 446
Construction of a Coumarin Library 449
Coumarin Library Constructed by Means of Palladium-Catalyzed Coupling Reactions 449
Coumarin Library Constructed by Click Chemistry 451
Development of a 6-Arylcoumarin Library of Candidate Fluorescent Sensors 452
Conclusions 455
Determination of Quantitative Structure–Property Relationships of Solvent Resistance of Polycarbonate Copolymers Using a Resonant Multisensor System 458
Introduction 458
Concept of Combinatorial Screening of Copolymer–Solvent Interactions 460
Sensor Array for High-Throughput Screening of Polymer–Solvent Interactions 461
Variability of System Performance 463
Wettability of Sensor Resonators 464
High-Throughput Screening of Copolymers 465
Property/Composition Mapping and Structure–Property Relationships 466
Applications of Polycarbonate Copolymers as Sensor Substrates 470
Conclusions 471
Computational Approaches to Design and Evaluation of Chemical Sensing Materials 474
Introduction 474
Application of Computational Techniques 475
Materials Modeling and Evaluation of Sensing Materials 476
Selection of a Sensor Set from Evaluated Materials: Modeling Sensor Response 478
Conclusions 480
Combinatorial Methods for Chemical and Biological Sensors: Outlook 484

Erscheint lt. Verlag 21.3.2009
Reihe/Serie Integrated Analytical Systems
Integrated Analytical Systems
Zusatzinfo XX, 494 p.
Verlagsort New York
Sprache englisch
Themenwelt Naturwissenschaften Biologie
Naturwissenschaften Chemie Physikalische Chemie
Technik
Wirtschaft
Schlagworte Biomaterial • Biosensor • Chemistry • Copolymer • fluorescence • Polycarbonat • Polymer
ISBN-10 0-387-73713-8 / 0387737138
ISBN-13 978-0-387-73713-3 / 9780387737133
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 9,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Quantenmechanik • Spektroskopie • Statistische Thermodynamik

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
54,95
Thermodynamik • Kinetik • Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

eBook Download (2024)
De Gruyter (Verlag)
59,95

von Peter W. Atkins; Julio de Paula; James J. Keeler

eBook Download (2021)
Wiley-VCH GmbH (Verlag)
76,99