The Physics of Organic Superconductors and Conductors (eBook)

Andrei Lebed (Herausgeber)

eBook Download: PDF
2008 | 2008
XXIV, 754 Seiten
Springer Berlin (Verlag)
978-3-540-76672-8 (ISBN)

Lese- und Medienproben

The Physics of Organic Superconductors and Conductors -
Systemvoraussetzungen
213,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This bang up-to-date volume contains the distilled wisdom of some of the world's leading minds on the subject. Inside, there is a treasure trove of general (tutorial) and topical reviews, written by leading researchers in the area of organic superconductors and conductors. The papers hail from all over the world, as far afield as the USA and Australia. They cover contemporary topics such as unconventional superconductivity, non-Fermi-liquid properties, and the quantum Hall effect.



Since 2004: Professor at Physics Dept., University of Arizona, USA;

Since 2000: Full Professor at Landau Institute for Theoretical Physics, Moscow, Russia;

2000: Doctor of Sciences (Full Professor) Degree from Landau Institute;

1995-2001: Visiting Professor at Kyoto University, Osaka University, and Tohoku University (all - Japan);

1990: Lenin Komsomol Prize in Physics (the Highest former Soviet Union Government Prize for scientists younger than 36);

1986: Ph.D. from Landau Institute for Theoretical Physics.

Since 2004: Professor at Physics Dept., University of Arizona, USA; Since 2000: Full Professor at Landau Institute for Theoretical Physics, Moscow, Russia; 2000: Doctor of Sciences (Full Professor) Degree from Landau Institute; 1995-2001: Visiting Professor at Kyoto University, Osaka University, and Tohoku University (all – Japan); 1990: Lenin Komsomol Prize in Physics (the Highest former Soviet Union Government Prize for scientists younger than 36); 1986: Ph.D. from Landau Institute for Theoretical Physics.

Preface 7
Contents 10
Contributors 22
Part I Historical Surveys 26
1 Historical Approach to Organic Superconductivity 27
1.1 One-Dimensional Conductors 27
1.2 Two-Dimensional Conductors 34
1.3 Conclusion 36
References 37
2 From Sliding Charge Density Wave to Charge Ordering 41
References 48
3 Field-Induced Spin–Density Waves and Dimensional Crossovers 49
3.1 Introduction 49
3.2 Peierls Spin(Charge)–Density Wave Instability 50
3.3 Field-Induced Spin–Density Wave Instability 52
3.4 Quantized Nesting Model 56
3.5 Beyond Quantum Nesting Model 62
References 63
4 Cascade of FISDW Phases: Wave Vector Quantization and its Consequences 65
4.1 Introduction 65
4.2 FISDW Wave Vector Quantization 66
4.3 Quantum Cascade of Phase Transitions 66
4.4 Novel Quantized Hall E.ect 68
References 69
Part II General Reviews 70
5 La Tour des Sels de Bechgaard 71
5.1 Introduction to the Bechgaard Salts 71
5.2 Magnetic Field E.ects in the Bechgaard Salts 76
5.3 Superconductivity in the Bechgaard Salts 89
5.4 Phases and Properties Near the SDW-Superconductor Boundary 101
5.5 Conclusions and Conundra 104
References 106
6 Physical Properties of Quasi-Two-Dimensional Organic Conductors in Strong Magnetic Fields 110
6.1 Introduction 110
6.2 Crystal Structure 111
6.3 Landau Quantization and Quantum Oscillations 112
6.4 Lifshitz and Kosevich (L-K) Formula 114
6.5 Other Oscillatory Effects 118
6.6 Effective Mass 121
6.7 Magnetic Breakdown 121
6.8 Quantum Interference 123
6.9 Internal Field 126
6.10 Special and Related Topics 128
6.11 Summary 143
References 144
7 Magnetic Properties of Organic Conductors and Superconductors as Dimensional Crossovers 148
7.1 Introduction 148
7.2 Our Goals 152
7.3 Dimensional Crossovers in a Magnetic Field 153
7.4 Quantum Mechanics of Dimensional Crossovers 164
7.5 Q2D Conductor: A Fully Quantum Mechanical Problem 176
7.6 Angular Magnetoresistance Oscillations 181
7.7 Field-Induced Spin-Density-Wave Phases 185
7.8 Reentrant Superconductivity Phenomenon 199
References 202
8 Layered Organic Conductors in Strong Magnetic Fields 206
8.1 Introduction 206
8.2 Angle-Dependent Magnetoresistance Oscillations 208
8.3 Other Effects of the Field Orientation on the Semiclassical Magnetoresistance 221
8.4 Breakdown of the Interlayer Coherence as Seen from the Magnetotransport 225
8.5 Magnetic Quantum Oscillations 229
8.6 High-Field Studies of the Low-Temperature Electronic State in a-(BEDT-TTF)4MHg(SCN)4 236
8.7 Other Organic Conductors: Probing and Controlling Electronic Properties by Strong Magnetic Fields 247
8.8 Concluding Remarks 255
References 256
9 High-field Magnetoresistive Effects in Reduced-Dimensionality Organic Metals and Superconductors 268
9.1 Introduction 268
9.2 Intralayer Fermi-Surface Topologies 270
9.3 High-Field Magnetotransport Effects 273
9.4 High-Field Shubnikov-de Haas Measurements and Quasiparticle Scattering 283
9.5 Charge-Density Waves at Fields above the Pauli Paramagnetic Limit 286
9.6 New Quantum Fluid in Strong Magnetic Fields with Orbital Flux Quantization 292
9.7 Summary 292
References 294
10 Energy and Dielectric Relaxations in Bechgaard–Fabre Salts 298
10.1 Introduction 298
10.2 Coulomb Interactions 300
10.3 Charge Ordering and Ferroelectric Transition 302
10.4 Thermodynamical Properties 314
10.5 Conclusions 328
References 330
11 Ferroelectricity and Charge Ordering in Quasi-1D Organic Conductors 334
11.1 Introduction: History and Events 334
11.2 Hierarchy of Phases in Quasi-1D Organic Conductors 337
11.3 Electronic Properties 344
11.4 Ferroelectric Mott–Hubbard Ground State 349
11.5 Elementary Excitations 352
11.6 Optics 356
11.7 Fate of the Metallic TMTSF Subfamily 361
11.8 Origin and Range of Basic Parameters 362
11.9 Conclusions and Perspectives 365
References 373
12 Interacting Electrons in Quasi-One-Dimensional Organic Superconductors 377
12.1 Introduction 377
12.2 Elements of Theory for Interacting Electrons in Low Dimension 380
12.3 The Fabre Salts Series 388
12.4 The Bechgaard Salts 400
12.5 Conclusion and Outlook 425
References 426
Part III Unusual Properties of a Metallic Phase 433
13 Unusual Magic Angles E.ects in Bechgaard Salts 434
13.1 Introduction 434
13.2 Fractional Magic Angle Effects in (TMTSF)2ReO4 435
13.3 Two Kinds of Angular Magnetoresistance Resonances of (TMTSF)2PF6: Pressure Dependence or Sample Dependence 441
13.4 Bechgaard Salts Are Not Always One-Dimensional: (TMTSF)2FSO3 445
13.5 Summary 449
References 449
14 Versatile Method to Estimate Dimensionality of Q1D Fermi Surface by Third Angular Effect 452
14.1 Third Angular Effect 452
14.2 Origin of TAE 454
14.3 Estimation of Dimensionality ty/tx by TAE 463
14.4 Case of Two Pairs of Q1D Fermi Surfaces 468
14.5 Pressure Dependence of the Dimensionality 472
References 474
15 Microwave Spectroscopy of Q1D and Q2D Organic Conductors 476
15.1 Introduction 476
15.2 The Periodic Orbit Resonance Phenomenon 478
15.3 Experimental Observation of POR for Q1D Systems 483
15.4 Open-Orbit POR in a Q2D System 493
15.5 Discussion and Comparisons with Other Experiments 496
15.6 Summary and Conclusions 499
References 500
Part IV Field-Induced Spin(Charge)-Density Wave Phases 504
16 Magnetic Field-Induced Spin-Density Wave and Spin-Density Wave Phases in (TMTSF)2PF6 505
16.1 Introduction 505
16.2 Cyclotron Resonance on Open Orbits 507
16.3 Novel Phases in the Field-Induced Spin-Density Wave 511
16.4 Rapid Oscillations 516
16.5 Coexistence of the Antiferromagnetic and Metallic Phases in (TMTSF)2PF6 527
16.6 Concluding Remark 542
References 542
17 Theory of the Quantum Hall E.ect in Quasi-One-Dimensional Conductors 546
17.1 Introduction to Quasi-One-Dimensional Conductors 546
17.2 Hall Effect in the Normal State 547
17.3 Introduction to the Quantum Hall E.ect in the FISDW State 547
17.4 Mathematical Theory of the FISDW 549
17.5 Quantum Hall E.ect as a Topological Invariant 551
17.6 Coexistence of Several Order Parameters 552
17.7 Temperature Evolution of the Quantum Hall Effect 553
17.8 Influence of the FISDW Motion on the Quantum Hall Effect 555
17.9 Chiral Edge States 558
17.10 Generalization to the Three-Dimensional Quantum Hall Effect 562
17.11 Conclusions and Open Questions 563
References 564
18 Orbitally Quantized Density-Wave States Perturbed from Equilibrium 568
18.1 Introduction 568
18.2 Critical State 569
18.3 Model for Non-equilibrium Field-Induced Density-Wave States 571
18.4 Magnetotransport 578
18.5 Future Directions 583
References 584
19 Unconventional Density Waves in Organic Conductors and in Superconductors 586
19.1 Introduction 586
19.2 Mean-Field Theory 588
19.3 Landau Quantization 591
19.4 Angle Dependent Magnetoresistance (ADMR) 592
19.5 Giant Nernst E.ect 598
19.6 Concluding Remarks 601
References 602
20 Charge Density Waves in Strong Magnetic Fields 605
20.1 Introduction 605
20.2 Theoretical Background 607
20.3 Discussion of Speci.c Regimes 608
20.4 Experiments 612
20.5 Conclusions 617
References 618
21 Unconventional Electronic Phases in (TMTSF)2X: The Case of (TMTSF)2ClO4 620
21.1 Introduction 620
21.2 Structural Properties of the ClO4- Anion Ordering 621
21.3 Relaxed State Properties 624
21.4 Concluding Remarks 632
Part V Unconventional Superconducting Properties 635
22 Mott Transition and Superconductivity in Q2D Organic Conductors 636
22.1 Introduction to Quasi-Two-Dimensional Organic Conductors 636
22.2 Mott Transition 637
22.3 Material Dependence of Normal-State Properties 639
22.4 Nature of Superconductivity 644
22.5 Pseudogap Behavior 651
22.6 Perspectives 652
References 653
23 Triplet Scenario of Superconductivity vs. Singlet One in (TMTSF)2X Materials 656
23.1 Introduction 656
23.2 Our Goals 658
23.3 Paramagnetic Limit in Q1D Case: HQ1D 660
23.4 Paramagnetic Limits in the Presence of the Orbital Effects: HQ1D p (.) and Hb 664
23.5 Paramagnetic Limitations for H || a 666
23.6 Physical Properties of d(k) = [da(k), 0, 0] Triplet Superconducting Phase 666
23.7 Reentrant Superconductivity Phenomenon 669
23.8 Singlet Scenario of Unconventional Superconductivity 671
References 671
24 Triplet Superconductivity in Quasi-One-Dimensional Conductors 673
24.1 Introduction 673
24.2 Hamiltonian and Order Parameter Symmetries 675
24.3 Spectroscopic and Thermodynamic Quantities 678
24.4 Josephson E.ect 682
24.5 Density Induced Quantum Phase Transitions 687
24.6 Coexistence of Triplet Superconductivity and Spin–Density Wave 690
24.7 Summary 695
References 696
25 Theory of the Fulde–Ferrell–Larkin–Ovchinnikov State and Application to Quasi-Low-dimensional Organic Superconductors 698
25.1 The FFLO State 699
25.2 Nesting Effect for the FFLO State 702
25.3 Vortex States and the FFLO State 704
25.4 Candidate Organic Superconductors 709
25.5 Other Exotic Superconductors 711
25.6 Conclusion and Future Prospects 712
References 713
Part VI Electron Correlations in Organic Conductors 716
26 SO(4) Symmetry in Bechgaard Salts 717
26.1 Competing Orders in Strongly Correlated Electron Systems: Emergence of Higher Symmetries 717
26.2 SO(4) Symmetry in Quasi-One-Dimensional Systems 719
26.3 Competition of Spin–Density Wave Order and Triplet Superconductivity in Bechgaard Salts 722
26.4 Collective Modes 725
References 727
27 From Luttinger to Fermi Liquids in Organic Conductors 729
27.1 Introduction 729
27.2 General Ideas 730
27.3 Mott Insulators and One-Dimensional Transport 735
27.4 Coupled Chains 745
27.5 Conclusions and Perspectives 749
References 751
Index 754

Erscheint lt. Verlag 26.3.2008
Reihe/Serie Springer Series in Materials Science
Springer Series in Materials Science
Zusatzinfo XXIV, 754 p.
Verlagsort Berlin
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie
Technik Maschinenbau
Wirtschaft
Schlagworte Condensed Matter • electricity • Hall Effect • Magnetic field • Magnetic field properties • Magnetic properties • Organic conductors • Phenoplaste • Physics • Quantum Hall Effect • spectroscopy • Spin-density waves • Superconductor • Transitions • Unconventional superc • Unconventional superconductivity
ISBN-10 3-540-76672-3 / 3540766723
ISBN-13 978-3-540-76672-8 / 9783540766728
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 20,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Von Energie und Entropie zu Wärmeübertragung und Phasenübergängen

von Rainer Müller

eBook Download (2023)
De Gruyter (Verlag)
54,95